

CLR SCRIPT

Version 1.62

March 15, 2004

Written by Carl L. Roth

clrscript@clrsoftware.com

www.clrsoftware.com/clrscript

PO Box 745, St. Joseph, IL 61873, USA

�CLR Script Help Index

Thank you for evaluating CLR Script™! I hope you find the program very useful.

How To...

Write and run your first script

Run a program

Issue a command to a program

Send information to a dialog box

Run a script file from a shortcut

Strict vs. Non-Strict

Language Reference

CLR Script Language Reference

Commands

File menu

Edit menu

View menu

Build menu

Tools menu

Window menu

Help menu

Information

Revision History

License Agreement

Registration Information

CLR Script is Shareware. Unregistered users are granted a limited license to evaluate CLR Script for 30 days. Please read the License Agreement and Registration Information in the help.

Copyright © 1998-2004 Carl L. Roth. All rights reserved.

CLR Script is a trademark of Carl L. Roth

Carl L. Roth

P.O. Box 745, St. Joseph, IL 61873, USA

clrscript@clrsoftware.com

www.clrsoftware.com/clrscript

�How to write and run your first script

CLR Script files are ASCII text files that contain instructions to execute. The syntax of the instructions is very similar to the programming language ‘C’. The instructions consist of built-in and user defined functions.

Here is an outline for writing script files:

	1.	Write the script instructions.

	2.	Save the script file.

	3.	Run the script file.

The “main” function is the first function called when running a script file. This is very important: every script file must contain a “main” function. For simple scripts, put all the instructions inside of the “main” function, between the curly braces { }.

For your first script, we are going to display a simple “Hello World!” message. Follow these steps to write and run your first script file:

	1.	Type in the following script instructions in a new script file window:

void main()

{

MessageBox("Hello World!", "Hi!", MB_OK);

}

	2.	Save your new script to a file using the Save command on the File menu. You can use the file name “Hello World”.

	3.	Run the script by using the Run command on the Build menu. The Run command calls the user defined function “main”.

See Also

User Defined Functions, MessageBox

�How to run a program

To run a program, use the Run function. Here is an example showing how to run Notepad:

void main()

{

// if not run notepad in a normal window, return.

if (!Run("notepad", SW_SHOWNORMAL))

	return;

// if not wait 10 seconds until the window title "Untitled - Notepad" is visible, return.

if (!WaitWindowTitleVisible("Untitled - Notepad", 10000))

	return;

// notepad is running. do something.

MessageBox("Notepad is running.");

}

The WaitWindowTitleVisible function is used because the amount of time a program loads varies.

To run a program maximized, use the show parameter SW_SHOWMAXIMIZED.

To run a program minimized, use the show parameter SW_SHOWMINIMIZED.

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

See Also

Run, WaitWindowTitleVisible

�How to issue a command to a program

To issue a command to a program, first make sure the correct window is active and then select the command using the keyboard. Here is some example code to issue the Page Setup command to Notepad.

// if not verify the active window contains the text "- Notepad", return.

if (!VerifyActiveWindowTitleSub("- Notepad"))

	return;

// send the file/page setup command.

SendKeys("{alt}ft");

See Also

SendKeys, VerifyActiveWindowTitleSub

�How to send information to a dialog box

To send information to a dialog box, first verify that the correct dialog box is open and then either send keystrokes to fill in the information or use the various dialog box functions. Here is some example code to fill in the margins in the Page Setup dialog box in Notepad:

// if not verify the active window is "Page Setup", return.

if (!VerifyActiveWindowTitle("Page Setup"))

	return;

// fill in the information.

SetDlgItemText("&Left:", "0.5");

SetDlgItemText("&Right:", "0.5");

SetDlgItemText("&Top:", "0.5");

SetDlgItemText("&Bottom:", "0.5");

// click the ok button.

ClickButton("OK");

If there is an accelerator key associated with a dialog item, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Enable” is displayed as “Enable” on the dialog box.

See Also

CheckDlgButton, ClickButton, ComboBox_SelectString, ListBox_SelectString, SendKeys, SetDlgItemText, VerifyActiveWindowTitle

�How to run a script file from a shortcut

Follow these steps to run a script file from a shortcut.

Easy Method

	1.	Run CLR Script.

	2.	Open the script file you want to run from a shortcut.

	3.	Select the Create Desktop Shortcut command from the Tools menu.

	4.	Confirm that you want to create a desktop shortcut. If the shortcut already exists, you will be asked to confirm replacing the current shortcut.

	5.	You can edit the properties of the shortcut if you would like to run the script hidden or start in a different folder.

	6.	If you do want the shortcut on the Start menu instead of the desktop, use Windows Explorer to move the shortcut to the Start menu.

Manual Method

	1.	Create a shortcut to the program clrscrpt.exe. Use the Windows Explorer Create Shortcut command.

	2.	Modify the properties of the new shortcut. Right-click on the shortcut and select the Properties command from the pop-up menu.

	3.	In the Target edit box, add the string “/r filename” to the end of the command line. The filename is the script file name to run. If the filename contains spaces, surround the filename with double quotation marks. For example: /r “long file name.csp”

	4.	If you want to run the script without displaying the progress dialog window, add the switch “/h” at the end of the Target command line to run the script hidden.

	5.	If appropriate, change the Start In folder name.

	6.	Choose the OK button to save the properties.

	7.	Rename the shortcut to something appropriate.

See Also

Command Line Options

�Command Line Options

The following command line options are available when running CLR Script:

/r

Run the script file. If this option is omitted, the script file will be opened for editing.

/h

Run the script file hidden. This must be combined with /r.

/s

Run the script file using the strict compiler option.

/l

Run the script file using the non-strict (lenient) compiler option.

/n

Start CLR Script without installing onto the computer. No files are copied onto the computer and no registry entries are added.

/c

Enable string special codes for the parameters. For example:�clrscrpt /r/c run.csp "c:\\temp\\file.txt" will convert the string special codes ‘\\’ to ‘\’.�clrscrpt /r run.csp "c:\temp\file.txt" will not convert the string special codes ‘\t’ to a tab character and ‘\f’ to an ‘f’.

/install

Reinstall CLR Script onto the computer. If CLR Script is not already installed, this option is not needed. This option cannot be combined with any other options.

Syntax

clrscrpt [options] [file name] [parameters]

Remarks

Depending upon how your computer is setup, you may need to provide the complete path to the CLR Script executable file.

To get the return value in a batch file, run CLR Script using start /w and test the return value using the errorlevel batch variable. For example:

start /w clrscrpt /r test.csp

if errorlevel=-1 goto err

if errorlevel=1 goto one

goto done

:one

echo Return 1

goto done

:err

echo There was an error running the script file.

:done

The parameters are always passed as strings. The number of parameters must match the number of parameters in the main() function. To enable string special codes, use the option ‘/c’. For example:

Command Line: clrscrpt /r test.csp Hi

test.csp script file:

void main(string s)

{

MessageBox(s);

}

This example displays “Hi” in a message box.

Example

clrscrpt /r "test script.csp"

This example runs the script file named “test script.csp”.

�Strict vs. Non-Strict

There are 2 different compilers in CLR Script. One is strict and the other is not strict. The non-strict compiler was introduced in version 1.60 to make writing script files easier. The compiler before version 1.60 was strict. Here is a list of the differences between the two different compilers.

Non-Strict

*	Variables do not need to be pre-defined.

*	Variables can be defined more than once as long as they are the same type.

*	Variable and function names are not case sensitive.

*	Integer and string variables are automatically converted when performing math and assignments.

*	When adding an integer and string, the integer is always converted to a string. For example: 1+”0” = “10”.

Strict

*	Variables need to be pre-defined.

*	Variables can not be defined more than once.

*	Variable and function names are case sensitive.

*	To convert integer and string variables when performing math and assignments, you need to use the itoa() and atoi() functions.

Non-Strict Example

void main()

{

	s = "Hi";

	i = 1;

	MessageBox(s + i);

}

Strict Example

void main()

{

	string s = "Hi";

	int i = 1;

	MessageBox(s + itoa(i));

}

See Also

Strict build option

#strict statement

�CLR Script Language Reference

The CLR Script language is very similar to C and the Windows API. If you are familiar with both of those languages, the CLR Script language will seem very familiar. If you are new to programming, the CLR Script language may be a little more difficult to use. Just follow the many examples, and the language can be easily learned. You can also read the many books on C and the Windows API.

Note: The CLR Script language is not the complete C language nor does it contain the complete Windows API. It is only a subset of the features and functions of both.

Type Specifiers

Statements

Operators

Constants

Variables

Comments

User Defined Functions

Built-In Functions

�Type Specifiers

Type specifiers define the type of variable or function.

Syntax

int	Integer number in the range of –2,147,483,648 to 2,147,483,647.

string	String of characters up to 16,777,216 (16 MB) characters in length.

void	No value type.

HBROWSER	Handle to a browser window.

HFILE	Handle to a file.

HKEY	Handle to a registry key.

Remarks

String constants are defined by double quotation marks ". For example: “Name”.

The special string characters are:

\\	\ character

\"	" character

\n	new line character

\r	return character

\t	tab character

String constants can continue to the next line by ending the line with a backward slash ‘\’ character.

The ‘\\’ special string character is important when specifying a path to a file. For example: “c:\\windows\\notepad”. You can also use the forward-slash ‘/’ when specifying a path to a file. For example: “c:/windows/notepad”.

The void type specifier can only be used as a function return type or to designate that there are no function parameters. For example: “void sample(void)” defines the sample function with no parameters and no return value.

Example

int DisplayMessageBox(string sText)

{

	string sTitle = "Message";

	MessageBox(sText, sTitle, MB_OK);

	return 0;

}

In this example, the function DisplayMessageBox will display the string sText in a message box titled using the variable sTitle then return an integer value 0

�Statements

Statements control the flow of the script and perform specific instructions.

break	The break statement breaks out of a loop.

if - else	The if statement controls conditional branching.

repeat	The repeat statement loops a specific number of times.

return	The return statement ends the execution of the function and returns control back to the calling function.

while	The while statement loops until the condition is FALSE.

#include	The #include statement includes other script files.

#strict	The #strict statement enables or disables the strict compiler option.

�break statement

The break statement breaks out of a loop.

Syntax

break;

Remarks

You can only break out of a repeat or while loop.

Example

repeat(10)

	{

	MessageBox("Display this message box only once.", "break", MB_OK);

	break;

	}

In this example, the message box is displayed only once because of the break statement.

See Also

repeat

while

�if - else statement

The if statement controls conditional branching. The statement(s) following the if statement is executed if the expression evaluates non-zero (TRUE). The statement(s) following the else statement is executed if the expression evaluates to zero (FALSE).

Syntax

if (expression) statement

if (expression) statement else statement

Remarks

You can define a block of statements to execute by using curly braces "{" and "}".

Example

if (IsEmpty(sText))

	{

	MessageBox("Please enter some text.", "Error", MB_OK);

	return 0;

	}

else

	MessageBox(sText, "Message", MB_OK);

In this example, if the variable sText is empty, a message box is displayed to tell the user to enter some text and the function returns. If the variable sText is not empty, the text is displayed in a message box.

�repeat statement

The repeat statement loops a specific number of times.

Syntax

repeat(n) statement

Parameters

n

The number of times to loop.

Remarks

You can define a block of statements to repeat by using curly braces "{" and "}".

Example

repeat(10)

	{

	MessageBox("Display this message box 10 times.", "repeat", MB_OK);

	}

In this example, a message box is displayed 10 times.

See Also

break

�return statement

The return statement ends the execution of the function and returns control back to the calling function. The expression is evaluated and returned to the calling function. If the expression is omitted, the return value is undefined.

If a function does not contain a return statement, the function automatically returns after the last statement.

Syntax

return;

return expression;

Remarks

The return statement always ends with a semi-colon ";".

For the main function, return values less than zero (0) are pre-defined as run-time or compiler errors. Use return values greater than zero (0) for user defined return values.

To get the return value in a batch file, run CLR Script using start /w and test the return value using the errorlevel batch variable. For example:

start /w clrscrpt /r test.csp

if errorlevel 1 goto one

goto allok

:one

echo Error 1

:allok

Example

int Zero()

{

	return 0;

}

In this example, the function Zero returns the value 0.

�while statement

The while statement repeats a statement or a block of statements until the expression is FALSE (non-zero).

Syntax

while(expression) statement

Remarks

You can define a block of statements to loop by using curly braces "{" and "}".

Example

while(FindWindow("", "Untitled - Notepad"))

	{

	MessageBox("Display this message box until Notepad is closed.", "while", MB_OK);

	}

In this example, a message box is displayed until Notepad is closed.

int i = 1;

while (i <= 10)

	{

	MessageBox(itoa(i), "Counter", MB_OK);

	i = i + 1;

	}

This example displays a counter value from 1 to 10 in a message box.

See Also

break

�#include

The #include statement includes other script files into the current script file.

Syntax

#include "filename"

Remarks

The #include statement cannot reside inside a function.

This statement is useful for including a library of functions.

Make sure the included script file does not re-define a function or global variable already defined.

main() functions are excluded from the included files. A main() function can be defined in the included file, but it will be skipped.

Example

#include "library.csp"

In this example, the script file library.csp is included into the current script file.

�#strict

The #strict statement enables or disables the strict compiler option.

Syntax

#strict option

option

The options available are: on, off, yes, no. If an option is not given, the default option is to enable the strict compiler.

Remarks

This statement is useful for making sure the compiler option is correct when sharing files with other users.

Only the first occurrence of the #strict statement is evaluated.

The #strict statement is ignored in #included files.

Example

#strict off

In this example, the strict compiler is disabled.

#strict

In this example, the strict compiler is enabled.

See Also

Strict command

Command Line Options

�Operators

The following operators can be used with integers:

Symbol	Operation

+	Addition

-	Subtraction, Negation

*	Multiplication

/	Division

|	Bitwise or

&	Bitwise and

%	Remainder

Logical Operators:

!	Logical not

||	Logical or

&&	Logical and

==	Equal

!=	Not equal

<	Less than

<=	Less than or equal to

>	Greater than

>=	Greater than or equal to

The following operators can be used with strings:

Symbol	Operation

+	String concatenation

Logical Operators:

==	Equal

!=	Not equal

The following operators can be used with HBROWSER and HKEY:

Symbol	Operation

Logical Operators:

==	Equal

!=	Not equal

Order of Precedence

The operators are evaluated left to right in the order of precedence listed below.

-, !	Negation, Logical not

*, /, %	Multiplication, Division, Remainder

+, -	Addition, Subtraction

|, &	Bitwise Or, Bitwise And

==, !=, <, <=, >, >=	Comparison

||, &&	Logical

To alter the order of precedence, use parenthesis to define what gets evaluated first. For example: (1+2)*3 = 9 whereas 1+2*3 = 7.

�Constants

The following constants are pre-defined:

Name	Value

FALSE	0

TRUE	1

NULL	0, “”

RAND_MAX	32,767

�Variables

Variables can be declared either as global or local. Global variables are declared outside function definitions. Local variables are declared inside function definitions.

Variables can be any name as long it is not a previously defined function or variable. The variable name is case sensitive when using the strict compiler option and not case sensitive when using the non-strict compiler option.

Syntax

type specifier name [, name …] ;

type specifier name = value [, name = value …] ;

The variable type is declared before the name of the variable.

The variable name can contain upper or lower case letters a through z, digits 0 through 9, under score ‘_’ or dollar sign ‘$’. The variable name cannot start with a digit.

Multiple variables can be defined by separating the names with a comma “,”.

Remarks

The value assigned must be the same type as the variable declared.

For global variables, the assigned value cannot reference user defined functions or variables. It can call built-in functions using constant argument values.

If no value is assigned when the variable is declared, the values are initialized as follows:

int	0

string	“”

HBROWSER	NULL

HFILE	NULL

HKEY	NULL

Examples

string g_sString = "Global";

void main()

{

	string sString = "Local";

	MessageBox("global g_sString = "+g_sString+"\nlocal sString = "+sString, "Variables", MB_OK);

}

In this example, the global variable g_sString and the local variable sString are declared and displayed.

int i = 1;

while (i <= 10)

	{

	MessageBox(itoa(i), "Counter", MB_OK);

	i = i + 1;

	}

This example displays a counter from 1 to 10.

�Comments

A comment in the script file is all the text on a line following the characters "//".

Example

// This entire line is a comment

MessageBox("Hi!", "Hi", MB_OK);	// The rest of this line is a comment

�User Defined Functions

A function is the modular unit of the script file to perform a specific task. There are user defined functions and built-in functions.

User defined functions can be any name as long it is not a previously defined function or variable, or a built-in function. The function name is case sensitive when using the strict compiler option and not case sensitive when using the non-strict compiler option.

Syntax

type specifier name() { }

type specifier name(type specifier argument, ...) { }

The return type of the function is declared before the name of the function.

The function name can contain upper or lower case letters a through z, digits 0 through 9, under score ‘_’ or dollar sign ‘$’. The function name cannot start with a digit.

The function can contain any number of arguments separated by commas ",". The arguments can be passed by reference or passed by value. If you include the ampersand “&” character in the declaration, the variable will be passed by reference. For example: int& n.

The function body is defined by curly braces "{" and "}".

Example

int Fun(int iNumber)

{

	MessageBox("This is fun!", "Yea!", MB_OK);

	return iNumber;

}

In this example, the function "Fun" calls the pre-defined function MessageBox then returns the value contained in the argument "iNumber".

void main()

{

	int n;

	Fun(n);

	MessageBox(itoa(n));

}

void Fun(int& iNumber)

{

	iNumber = 2;

}

In this example, the function “Fun” sets the variable iNumber to the value 2. The variable “n” is set to 2 when the “Fun” function is called. The value of “n” is then displayed in a message box.

�Built-In Functions

Here is a list of the built-in functions.

Grouped

Programs

Run

RunWait

Keyboard

SendKeys

Internet

BrowserAttachIE

BrowserClickFormButton

BrowserClose

BrowserFollowTextLink

BrowserGetBodyText

BrowserGetFormFields

BrowserGetFormNames

BrowserGetHtml

BrowserGetLocationURL

BrowserGetOpenWindowTitles

BrowserGetStatusText

BrowserGetTextLinks

BrowserGetTextLinkUrl

BrowserGetTitle

BrowserGoBack

BrowserIsDocumentComplete

BrowserIsDocumentInteractive

BrowserLaunchIE

BrowserNavigate

BrowserRefresh

BrowserResetForm

BrowserSetActiveForm

BrowserSetForegroundWindow

BrowserSetFormField

BrowserSetInternetSettings

BrowserShowWindow

BrowserSubmitForm

BrowserWaitDocumentComplete

BrowserWaitDocumentInteractive

BrowseURL

DownloadUrl

FtpDelete

FtpDownload

FtpDownloadUrl

FtpGetFolderListing

FtpGetOpenFileName

FtpRename

FtpUpload

GetIPAddress

IsConnectedToInternet

SendMailMapi

Windows

FindWindow

GetForegroundWindowTitle

SetForegroundWindow

SetForegroundWindowTitleSub

VerifyActiveMDIWindowTitle

VerifyActiveWindowText

VerifyActiveWindowTitle

VerifyActiveWindowTitleSub

WaitWindowClosed

WaitWindowTitleVisible

Window Controls

CheckDlgButton

ClickButton

ComboBox_GetCount

ComboBox_GetText

ComboBox_SelectString

GetDlgItemText

IsDlgButtonChecked

ListBox_GetCount

ListBox_GetText

ListBox_SelectString

SetDlgItemText

Menus

GetMenuCommandStrings

GetMenuState

Messages

MessageBox

Flow Control

exit

Pause

User Input

InputString

Clipboard

CopyToClipboard

EmptyClipboard

GetClipboardText

Files

AppendFileString

BrowseForFolder

CloseFile

CopyFile

CreateFile

CreateFolder

DeleteFile

DeleteFolder

FileEOF

FileExists

FolderExists

GetFileAttributes

GetFileSize

GetFileTimeString

GetFolderListing

GetOpenFileName

MoveFile

OpenFile

ReadFileString

SetFileAttributes

WriteFileString

Printers

SetDefaultPrinter

Strings

ASCII

atoi

Chr

FindString

IsEmpty

itoa

LeftString

MidString

ReplaceString

RightString

strlen

strlwr

strupr

Registry

RegCreateKey

RegDeleteKey

RegDeleteKeyValue

RegGetKeyValueInt

RegGetKeyValueString

RegSetKeyValueInt

RegSetKeyValueString

Environment

GetEnvironmentVariable

Date and Time

CurrentTimeString

SetSystemTime

NT Services

IsServiceActive

Network

GetUserName

NetUserChangePassword

Screen Saver

EnableScreenSaver

IsScreenSaverRunning

StopScreenSaver

Graphics

GetPixelColor

Miscellaneous

ExitWindows

rand

SetRunningScriptWindow

SetWaitIncrement

�Alphabetically

A

AppendFileString

ASCII

atoi

B

BrowseForFolder

BrowserAttachIE

BrowserClickFormButton

BrowserClose

BrowserFollowTextLink

BrowserGetBodyText

BrowserGetFormFields

BrowserGetFormNames

BrowserGetHtml

BrowserGetLocationURL

BrowserGetOpenWindowTitles

BrowserGetStatusText

BrowserGetTextLinks

BrowserGetTextLinkUrl

BrowserGetTitle

BrowserGoBack

BrowserIsDocumentComplete

BrowserIsDocumentInteractive

BrowserLaunchIE

BrowserNavigate

BrowserRefresh

BrowserResetForm

BrowserSetActiveForm

BrowserSetForegroundWindow

BrowserSetFormField

BrowserShowWindow

BrowserSetInternetSettings

BrowserSubmitForm

BrowserWaitDocumentComplete

BrowserWaitDocumentInteractive

BrowseURL

C

CheckDlgButton

Chr

ClickButton

CloseFile

ComboBox_GetCount

ComboBox_GetText

ComboBox_SelectString

CopyFile

CopyToClipboard

CreateFile

CreateFolder

CurrentTimeString

D

DeleteFile

DeleteFolder

DownloadUrl

E

EmptyClipboard

EnableScreenSaver

exit

ExitWindows

F

FileEOF

FileExists

FindString

FindWindow

FolderExists

FtpDelete

FtpDownload

FtpDownloadUrl

FtpGetFolderListing

FtpGetOpenFileName

FtpRename

FtpUpload

G

GetClipboardText

GetDlgItemText

GetEnvironmentVariable

GetFileAttributes

GetFileSize

GetFileTimeString

GetFolderListing

GetForegroundWindowTitle

GetIPAddress

GetMenuCommandStrings

GetMenuState

GetOpenFileName

GetPixelColor

GetUserName

I

InputString

IsConnectedToInternet

IsDlgButtonChecked

IsEmpty

IsScreenSaverRunning

IsServiceActive

itoa

L

LeftString

ListBox_GetCount

ListBox_GetText

ListBox_SelectString

M

MessageBox

MidString

MoveFile

N

NetUserChangePassword

O

OpenFile

P

Pause

R

rand

ReadFileString

RegCreateKey

RegDeleteKey

RegDeleteKeyValue

RegGetKeyValueInt

RegGetKeyValueString

RegSetKeyValueInt

RegSetKeyValueString

ReplaceString

RightString

Run

RunWait

S

SendKeys

SendMailMapi

SetDefaultPrinter

SetDlgItemText

SetFileAttributes

SetForegroundWindow

SetForegroundWindowTitleSub

SetRunningScriptWindow

SetSystemTime

SetWaitIncrement

StopScreenSaver

strlen

strlwr

strupr

V

VerifyActiveMDIWindowTitle

VerifyActiveWindowText

VerifyActiveWindowTitle

VerifyActiveWindowTitleSub

W

WaitWindowClosed

WaitWindowTitleVisible

WriteFileString

���AppendFileString

The AppendFileString function appends a string to the end of a text file.

int AppendFileString(

string filename,	// the name of the file to append to

string text	// the text to append

);

Parameters

filename

The name of the file to append to. If the file does not exist, it will be created.

text

The text to append. To create a new line in a file, use the character code ‘\n’.

Return Values

The AppendFileString function returns TRUE (non-zero) if the text was appended. The AppendFileString function returns FALSE (zero) if the text was not appended.

Remarks

This function is useful for creating log files.

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

if (AppendFileString("c:\\temp\\trash.txt", "Hi!\n"))

	MessageBox("The string Hi! was appended to the end of the file trash.txt.", "AppendFileString", MB_OK);

else

	MessageBox("The string Hi! was not appended.", "AppendFileString", MB_OK);

This example appends the string Hi! to the end of the file trash.txt in the c:\temp folder and displays the appropriate message box.

See Also

CopyFile, CreateFile, DeleteFile, FileExists

�ASCII

The ASCII function converts the first character of a string to an ASCII value. For example: ASCII(“A”) = 65.

int ASCII(

string s	// the character to convert

);

Parameters

s

The character to convert to an ASCII value. Only the first character of the string is converted.

Return Values

The ASCII function returns the ASCII value of the first character of the string.

Remarks

This command is the opposite of the Chr() function.

Example

int i = ASCII("A");

MessageBox("ASCII(\"A\") = " + itoa(i), "ASCII", MB_OK);

This example displays the ASCII value of the character A.

See Also

Chr

�atoi

The atoi function converts a string value to an integer.

int atoi(

string s	// the string to convert

);

Parameters

s

The string value to convert.

Return Values

The atoi function returns an integer representation of the string.

Example

int i = atoi("10");

This example set the integer i to the value of the string “10”.

�BrowseForFolder

The BrowseForFolder function displays a standard folder selection dialog box for the user to choose an existing folder name.

string BrowseForFolder(

string root,	// the name of the root folder to display (optional)

string prompt	// the text displayed above the folder listing (optional)

);

Parameters

root

The name of the root folder to display. Folders above the root folder cannot be selected. This parameter is optional. The default root folder is the Desktop.

prompt

The text to display above the folder listing. This parameter is optional. The default prompt text is “Choose a folder”.

Return Values

The BrowseForFolder function returns path of the folder selected. If the Cancel button is selected, an empty string is returned.

Remarks

When specifying the path to the root, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

string folder = BrowseForFolder();

MessageBox("You selected the folder: "+folder);

This example displays a dialog box for the user to select a folder. The folder path is then displayed.

See Also

GetOpenFileName

�BrowserAttachIE

The BrowserAttachIE function attaches to an existing Microsoft Internet Explorer window.

HBROWSER BrowserAttachIE(

string title	// the title of the browser window to attach

);

Parameters

title

The title of the browser window to attach.

Return Values

The BrowserAttachIE function returns a handle to the existing browser if successful. If the browser window title cannot be found, BrowserAttachIE returns NULL.

Remarks

To get a listing of all the open Microsoft Internet Explorer window titles, use the BrowserGetOpenWindowTitles function.

This function only works with Microsoft Internet Explorer 4 or above.

Example

HBROWSER hBrowserIE = BrowserAttachIE("CLR Software");

if (hBrowserIE == NULL)

	MessageBox("CLR Software could not be found", "BrowserAttachIE", MB_OK);

This example finds the existing Microsoft Internet Explorer window titled “CLR Software”, stores the handle to the browser in hBrowserIE.

See Also

BrowserLaunchIE

�BrowserClickFormButton

The BrowserClickFormButton function simulates clicking on a form button.

int BrowserClickFormButton(

HBROWSER hbrowser,	// the handle of the browser window

string name,	// the name of the button to click

int count	// the order count of the button to click (optional)

);

Parameters

hbrowser

The handle of the browser window.

name

The name of the button to click.

count

The order count of the button to click. This is useful for multiple buttons with the same name. This parameter is optional. The default is the first matching button.

Return Values

The BrowserClickFormButton function returns 1 if the button was clicked. The BrowserClickFormButton function returns 0 if there was an error clicking the form button. The BrowserClickFormButton function returns -1 if the form button was not found.

Remarks

The name of the button is case sensitive and the entire button name must match.

Make sure the web page that contains the form button has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

Use the functions BrowserSubmitForm and BrowserResetForm to perform the submit form and reset form actions. Use the BrowserClickFormButton function if either of these two functions do not work properly.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

int iret = BrowserClickFormButton(hBrowserIE, "ClickHere");

if (iret == 0)

	MessageBox("There was an error clicking the form button.", "BrowserClickFormButton", MB_OK);

if (iret == -1)

	MessageBox("The form button was not found.", "BrowserClickFormButton", MB_OK);

This example clicks on the form button named “ClickHere” and displays a message if there is an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserResetForm, BrowserSetActiveForm, BrowserSubmitForm, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserClose

The BrowserClose function closes the browser window.

int BrowserClose(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to close.

Return Values

The BrowserClose function returns TRUE (non-zero) if the browser window was closed. The BrowserClose function returns FALSE (zero) if there was an error closing the browser window.

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserClose(hBrowserIE))

	MessageBox("There was an error closing the browser.", "BrowserClose", MB_OK);

This example closes the browser window and displays an error message if there was an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserFollowTextLink

The BrowserFollowTextLink function follows a text link on a web page.

int BrowserFollowTextLink(

HBROWSER hbrowser,	// the handle of the browser window

string text,	// the text of the link to follow

int num	// the order number of the link to follow (optional)

);

Parameters

hbrowser

The handle of the browser window.

text

The text of the link to follow. This text can be the actual text displayed, the tool tip text for a graphical link, or the image file name for a graphical link.

num

The order number of the link. This parameter is usually 1 unless there is more than one link with exactly the same text. This parameter is optional. The default value is 1.

Return Values

The BrowserFollowTextLink function returns 1 if the text link was found and followed. The BrowserFollowTextLink function returns 0 if there was an error following the text link. The BrowserFollowTextLink function returns -1 if the text link was not found.

Remarks

The text of the link is case sensitive and the entire link text must match.

Make sure the web page that contains the link has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

int iret = BrowserFollowTextLink(hBrowserIE, "CLR Script", 1);

if (iret == 0)

	MessageBox("There was an error following the text link.", "BrowserFollowTextLink", MB_OK);

if (iret == -1)

	MessageBox("The link was not found.", "BrowserFollowTextLink", MB_OK);

This example follows the link “CLR Script” and reports if there is an error following the link. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserGoBack, BrowserLaunchIE, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserGetBodyText

The BrowserGetBodyText function gets the text of the current web page.

string BrowserGetBodyText(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to get the text.

Return Values

The BrowserGetBodyText function returns the text of current web page. If there is an error getting the text of the page, an empty string will be returned.

Remarks

This command is very similar to using the browser’s Save As command to save the current page as a text file.

If the web page contains frames, the text will most likely be empty since each frame is displaying it’s own web page. Navigate to the frame’s web page to retrieve the text of the frame.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

MessageBox("The text of the current web page is: "+BrowserGetBodyText(hBrowserIE), "BrowserGetBodyText", MB_OK);

This example displays the text of the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserGetFormFields

The BrowserGetFormFields function gets the name, type and options of all the form fields on the active web form.

string BrowserGetFormFields

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window.

Return Values

The BrowserGetFormFields function returns a string containing all the form fields. Each form field is separated by the new line character “\n”.

Remarks

The format of each link is: type:name. For the “radio” type, the format is: radio:name=value. For the “select” and “select-multi” type, each option follows on the next lines with the format: option:value. For the “checkbox” type, the name and value will be separated by a new line character “\n”. For example:

text:Name

password:Password

radio:Payment=Check

radio:Payment=Card

select:CreditCard

option:VISA

option:Mastercharge

option:Discover

select-multi:Program

option:CLRScript

option:TabsToSpaces

option:WebSiteUploader

checkbox:Subscribe\nYes

textarea:Comment

This function is useful for finding out the correct form field names and options to set using the BrowserSetFormField function.

To set the active form, use the BrowserSetActiveForm function.

Make sure the web page has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

string sFields = BrowserGetFormFields(hBrowserIE);

MessageBox(sFields , "BrowserGetFormFields", MB_OK);

This example displays all the form fields on the active form on the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserSetActiveForm, BrowserSetFormField, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserGetFormNames

The BrowserGetFormNames function gets the names and order numbers of all the forms on the web page.

string BrowserGetFormNames(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window.

Return Values

The BrowserGetFormNames function returns a string containing all the form names and order numbers. Each form name is separated by the new line character “\n”.

Remarks

The format of each form name is: order numer:name. For example:

1:Search

2:UserInformation

This function is useful for finding out the correct form name or number to set active using the BrowserSetActiveForm function.

Make sure the web page has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

string sNames = BrowserGetFormNames(hBrowserIE);

MessageBox(sNames, "BrowserGetFormNames", MB_OK);

This example displays the names of all the forms on the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserSetActiveForm, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserGetHtml

The BrowserGetHtml function gets the HTML source of the current web page.

string BrowserGetHtml(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to get the HTML source.

Return Values

The BrowserGetHtml function returns the HTML source of current web page. If there is an error getting the HTML source of the page, an empty string will be returned.

Remarks

This command is very similar to using the browser’s Source command to get the HTML source of the current page. The source text will be different than the actual file because Internet Explorer renders the page.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

MessageBox("The HTML source of the current web page is: "+BrowserGetHtml(hBrowserIE), "BrowserGetHtml", MB_OK);

This example displays the HTML source of the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserGetLocationURL

The BrowserGetLocationURL function gets the URL of the current web page.

string BrowserGetLocationURL(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to get the URL.

Return Values

The BrowserGetLocationURL function returns the URL of current web page. If there is an error getting the URL of the page, an empty string will be returned.

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

MessageBox("The URL of the current web page is: "+BrowserGetLocationURL(hBrowserIE), "BrowserGetLocationURL", MB_OK);

This example displays the URL of the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserGetOpenWindowTitles

The BrowserGetOpenWindowTitles function gets the text of the current web page.

string BrowserGetOpenWindowTitles();

Parameters

There are no parameters.

Return Values

The BrowserGetOpenWindowTitles function returns a list of all the open Microsoft Internet Explorer windows. Each title is separated by a new line character (“\n”).

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

MessageBox(BrowserGetOpenWindowTitles(), "BrowserGetOpenWindowTitles", MB_OK);

This example displays a list of all the open browser window titles.

�BrowserGetStatusText

The BrowserGetStatusText function gets the status bar text of the browser window.

string BrowserGetStatusText(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to get the status bar text.

Return Values

The BrowserGetStatusText function returns the status bar text of the browser window. If there is an error getting the status bar text, an empty string will be returned.

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

MessageBox("The status bar text is: "+BrowserGetStatusText(hBrowserIE), " BrowserGetStatusText", MB_OK);

This example displays the status bar text of the browser window. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserGetTextLinks

The BrowserGetTextLinks function gets the text and order numbers of all the links on the web page.

string BrowserGetTextLinks(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window.

Return Values

The BrowserGetTextLinks function returns a string containing all the links text and order numbers. Each link is separated by the new line character “\n”.

Remarks

The format of each link is: order numer:text. For example:

1:Home

2:Links

This function is useful for finding out the correct link text or number to follow using the BrowserFollowTextLink function.

Make sure the web page has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

string sLinks = BrowserGetTextLinks(hBrowserIE);

MessageBox(sLinks , "BrowserGetTextLinks", MB_OK);

This example displays the text of all the links on the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserFollowTextLink, BrowserLaunchIE, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserGetTextLinkUrl

The BrowserGetTextLinkUrl function gets the URL of a text link on a web page.

string BrowserGetTextLinkUrl(

HBROWSER hbrowser,	// the handle of the browser window

string text,	// the text of the link to follow

int num	// the order number of the link to follow (optional)

);

Parameters

hbrowser

The handle of the browser window.

text

The text of the link to get the URL. This text can be the actual text displayed, the tool tip text for a graphical link, or the image file name for a graphical link.

num

The order number of the link. This parameter is usually 1 unless there is more than one link with exactly the same text. This parameter is optional. The default value is 1.

Return Values

The BrowserGetTextLinkUrl function returns the URL of the text link if it was found. The BrowserGetTextLinkUrl function returns an empty string if there was an error with the text link or if the text link was not found.

Remarks

The text of the link is case sensitive and the entire link text must match.

Make sure the web page that contains the link has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

string url = BrowserGetTextLinkUrl(hBrowserIE, "CLR Script", 1);

MessageBox(url, "BrowserGetTextLinkUrl", MB_OK);

This example displays the URL of the first CLR Script link on the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserGetTitle

The BrowserGetTitle function gets the title of the current web page.

string BrowserGetTitle(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to get the title.

Return Values

The BrowserGetTitle function returns the title of current web page. If there is an error getting the title of the page, an empty string will be returned.

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

MessageBox("The title of the current web page is: "+BrowserGetTitle(hBrowserIE), "BrowserGetTitle", MB_OK);

This example displays the title of the current web page. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserGoBack

The BrowserGoBack function navigates back to the previous web page.

int BrowserGoBack(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to go back.

Return Values

The BrowserGoBack function returns TRUE (non-zero) if the previous web page was displayed. The BrowserGoBack function returns FALSE (zero) if there was an error navigating to the previous page.

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserGoBack(hBrowserIE))

	MessageBox("There was an error going to the previous web page.", "BrowserGoBack", MB_OK);

This example navigates to the previous web page and displays a message if there was an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserIsDocumentComplete

The BrowserIsDocumentComplete function sees if the browser is in the process of downloading a web page.

int BrowserIsDocumentComplete(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to check.

Return Values

The BrowserIsDocumentComplete function returns TRUE (non-zero) if the browser has finished downloading a web page. The BrowserIsDocumentComplete function returns FALSE (zero) if the browser is in the process of downloading a web page.

Remarks

This function is useful to perform some idle time processing while a web page is downloading. To simply wait for a web page to download, use the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserNavigate(hBrowserIE, "www.clrsoftware.com"))

	MessageBox("There was an error navigating to the url.", "BrowserNavigate", MB_OK);

while (!BrowserIsDocumentComplete(hBrowserIE))

	{

	// perform some idle time processing here

	Pause(1000);

	}

This example navigates to the www.clrsoftware.com web page and waits until the page has finished downloading. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserIsDocumentInteractive, BrowserLaunchIE, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserIsDocumentInteractive

The BrowserIsDocumentInteractive function sees if the browser is in the process of downloading a web page.

int BrowserIsDocumentInteractive(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to check.

Return Values

The BrowserIsDocumentInteractive function returns TRUE (non-zero) if the browser is ready to accept input. The BrowserIsDocumentInteractive function returns FALSE (zero) if the browser is in the process of downloading a web page.

Remarks

This function is useful to perform some idle time processing while a web page is downloading. To simply wait for a web page to download, use the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

Just because the browser is ready for input does not necessarily mean that the page objects (links, form fields, etc.) exist. It may take a little while for the browser to render the objects and make them available.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserNavigate(hBrowserIE, "www.clrsoftware.com"))

	MessageBox("There was an error navigating to the url.", "BrowserNavigate", MB_OK);

while (!BrowserIsDocumentInteractive(hBrowserIE))

	{

	// perform some idle time processing here

	Pause(1000);

	}

This example navigates to the www.clrsoftware.com web page and waits until the page is ready for input. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserIsDocumentComplete, BrowserLaunchIE, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserLaunchIE

The BrowserLaunchIE function launches Microsoft Internet Explorer.

HBROWSER BrowserLaunchIE();

Parameters

There are no parameters.

Return Values

The BrowserLaunchIE function returns a handle to the browser if successful. If the browser cannot be started, BrowserLaunchIE returns NULL.

Remarks

To use an existing Microsoft Internet Explorer window, use the BrowserAttachIE function.

This function can only start Microsoft Internet Explorer 4 or above.

Example

HBROWSER hBrowserIE = BrowserLaunchIE();

if (hBrowserIE == NULL)

	MessageBox("There was an error starting IE", "BrowserLaunchIE", MB_OK);

This example starts Microsoft Internet Explorer, stores the handle to the browser in hBrowserIE and makes sure the browser was started.

See Also

BrowserAttachIE, BrowserClose

�BrowserNavigate

The BrowserNavigate function opens the specified URL in the browser window.

int BrowserNavigate(

HBROWSER hbrowser,	// the handle of the browser window

string url	// the url to open

);

Parameters

hbrowser

The handle of the browser window.

url

The url to open.

Return Values

The BrowserNavigate function returns TRUE (non-zero) if the URL was opened. The BrowserNavigate function returns FALSE (zero) if there was an error opening the URL.

Remarks

The BrowserNavigate function returns as soon as the page starts downloading. Use the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function to pause the script until the web page has finished downloading.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserNavigate(hBrowserIE, "www.clrsoftware.com"))

	MessageBox("There was an error navigating to the url.", "BrowserNavigate", MB_OK);

This example navigates to www.clrsoftware.com and displays an error message if there was an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserRefresh

The BrowserRefresh function refreshes the current web page.

int BrowserRefresh(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to refresh.

Return Values

The BrowserRefresh function returns TRUE (non-zero) if the current web page was refreshed. The BrowserRefresh function returns FALSE (zero) if there was an error refreshing the current page.

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserRefresh(hBrowserIE))

	MessageBox("There was an error refreshing the current web page.", "BrowserRefresh", MB_OK);

This example refreshed the current web page and displays a message if there was an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE

�BrowserResetForm

The BrowserResetForm function resets the fields of the active form.

int BrowserResetForm(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window.

Return Values

The BrowserResetForm function returns 1 if the form was reset. The BrowserResetForm function returns 0 if there was an error resetting the form. The BrowserResetForm function returns -1 if there was not a form to reset.

Remarks

Make sure the web page that contains the form to reset has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

int iret = BrowserResetForm(hBrowserIE);

if (iret == 0)

	MessageBox("There was an error resetting the form.", "BrowserResetForm", MB_OK);

if (iret == -1)

	MessageBox("There is not a form to reset.", "BrowserResetForm", MB_OK);

This example resets the fields of the active form and displays a message if there is an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserSetActiveForm, BrowserSubmitForm, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserSetActiveForm

The BrowserSetActiveForm function sets a form on a web page as active for the next series of BrowserSetFormField calls.

int BrowserSetActiveForm(

HBROWSER hbrowser,	// the handle of the browser window

string name,	// the name of the form to set active

int num	// the order number of the form to set active

);

Parameters

hbrowser

The handle of the browser window.

name

The name of the form to set active. If the form does not have a name or you want to match all the forms, use an empty string (“”) as the name.

num

The order number of the form. This parameter is usually 1 unless there is more than one form with the same name or you are using an empty string (“”) as the form name to match.

Return Values

The BrowserSetActiveForm function returns 1 if the form was set active. The BrowserSetActiveForm function returns 0 if there was an error setting the active form. The BrowserSetActiveForm function returns -1 if the form was not found.

Remarks

The default active form is the first form on the web page.

This function is useful when there is more than one form on the web page.

The name of the form is case sensitive and the entire form name must match.

Make sure the web page that contains the form has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

int iret = BrowserSetActiveForm(hBrowserIE, "", 2);

if (iret == 0)

	MessageBox("There was an error setting the active form.", "BrowserSetActiveForm", MB_OK);

if (iret == -1)

	MessageBox("The form was not found.", "BrowserSetActiveForm", MB_OK);

This example sets the second form on the web page as active and displays a message if there is an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserClickFormButton, BrowserLaunchIE, BrowserSetFormField, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserSetForegroundWindow

The BrowserSetForegroundWindow function brings the browser window to the foreground.

int BrowserSetForegroundWindow(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window to bring to the foreground.

Return Values

The BrowserSetForegroundWindow function returns TRUE (non-zero) if the browser is brought to the foreground. The BrowserSetForegroundWindow function returns FALSE (zero) if there was an error bringing browser window to the foreground.

Remarks

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserSetForegroundWindow(hBrowserIE))

	MessageBox("There was an error bringing the browser window to the foreground.", "BrowserSetForegroundWindow", MB_OK);

This example brings the browser window to the foreground and displays a message if there was an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserShowWindow

�BrowserSetFormField

The BrowserSetFormField function sets the value of a field on the active form.

int BrowserSetFormField(

HBROWSER hbrowser,	// the handle of the browser window

string name,	// the name of the field to set

string value,	// the value of the field to set

int count	// the order count of the field to set (optional)

);

Parameters

hbrowser

The handle of the browser window.

name

The name of the field to set.

value

The value of the field to set.

count

The order count of the field to set. This is useful for multiple fields with the same name. This parameter is optional. The default is the first matching field.

Return Values

The BrowserSetFormField function returns the following values:

Value	Description

1	the form field value was set

0	there was an error setting the value of the form field

-1	the form field was not found

-2	the radio button value was not found

-3	the select text value was not found

-4	invalid check box option

Remarks

The name of the field is case sensitive and the entire field name must match.

If the name of the field is missing, the value of the field can be used. To match a field based on both the name and value, separate the name and value with a new line character “\n”. These options are primarily used for check boxes.

For check box fields, use the following value strings:

Check Box	Value String

Checked	“True”, “On”, “Checked”

Unchecked	“False”, “Off”, “Unchecked”

For multi-select fields, separate each selection with a new line character “\n”.

To get a list of form fields you can set, use the BrowserGetFormFields function.

To set the active form, use the BrowserSetActiveForm function.

Make sure the web page that contains the form button has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

int iret = BrowserSetFormField(hBrowserIE, "Name", "Carl");

if (iret == 0)

	MessageBox("There was an error setting the form field.", "BrowserSetFormField", MB_OK);

if (iret == -1)

	MessageBox("The form field was not found.", "BrowserSetFormField", MB_OK);

This example sets the form field named “Name” to “Carl” and displays a message if there is an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserSetActiveForm, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserSetInternetSettings

The BrowserSetInternetSettings function sets a global Internet setting.

int BrowserSetInternetSettings(

int setting,	// the setting to set

int value	// the value to set

);

Parameters

setting

The Internet setting to set.

INTERNET_SETTINGS_WARN_ON_ZONE_CROSSING

Warn if changing between secure and non-secure mode. Set value to TRUE or FALSE.

INTERNET_SETTINGS_WARN_ON_POST_REDIRECT

Warn if form submittal is being redirected. Set value to TRUE or FALSE.

INTERNET_SETTINGS_SUBMIT_NONENCRYPTED_FORM_DATA

Submit non-encrypted form data. Set value to one of the follow values:

0	Enable

1	Prompt

3	Disable

Return Values

The BrowserSetInternetSettings function returns TRUE (non-zero) if the value was successfully set. The BrowserSetInternetSettings function returns FALSE (zero) if there was an error setting the value.

Remarks

This function is useful to temporarily not displaying the browser security warning messages when running a script in the background.

Call this function before launching the browser window.

Be sure to reset the settings back to your original values at the end of your script file.

Example

if (!BrowserSetInternetSettings(INTERNET_SETTINGS_SUBMIT_NONENCRYPTED_FORM_DATA, 0)

	MessageBox("There was an error setting the Internet setting.");

This example enables submitting non-encrypted form data and displays a message if there was an error setting the value.

�BrowserShowWindow

The BrowserShowWindow function specifies how the browser window is to be shown.

int BrowserShowWindow(

HBROWSER hbrowser,	// the handle of the browser window

int show	// specifies how the window is to be shown (optional)

);

Parameters

hbrowser

The handle of the browser window to show.

show

Specifies how the window is to be shown. This parameter is optional. The default value is SW_SHOWNORMAL.

SW_SHOWMINIMIZED	Activate and show the window minimized.

SW_SHOWMINNOACTIVE	Show the window minimized. The window that was active remains active.

SW_SHOWMAXIMIZED	Activate and show the window maximized.

SW_SHOWNORMAL	Activate and show the window in its normal state.

Return Values

The BrowserShowWindow function returns TRUE (non-zero) if the browser window was shown correctly. The BrowserShowWindow function returns FALSE (zero) if there was an error showing the browser window.

Remarks

This function is useful for minimizing the browser window so it can work in the background.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

if (!BrowserShowWindow(hBrowserIE, SW_SHOWMINIMIZED))

	MessageBox("There was an error minimizing the browser.", "BrowserShowWindow", MB_OK);

This example minimizes the browser window and displays an error message if there was an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserLaunchIE, BrowserSetForegroundWindow

�BrowserSubmitForm

The BrowserSubmitForm function submits the active form.

int BrowserSubmitForm(

HBROWSER hbrowser	// the handle of the browser window

);

Parameters

hbrowser

The handle of the browser window.

Return Values

The BrowserSubmitForm function returns 1 if the form was submitted. The BrowserSubmitForm function returns 0 if there was an error submitting the form. The BrowserSubmitForm function returns -1 if there was not a form to submit.

Remarks

If you are having a problem submitting forms using the BrowserSubmitForm function, try using the BrowserClickFormButton function instead.

Make sure the web page that contains the form to submit has finished downloading by using the BrowserWaitDocumentComplete or BrowserWaitDocumentInteractive function.

This function can only work with Microsoft Internet Explorer 4 or above.

Example

int iret = BrowserSubmitForm(hBrowserIE);

if (iret == 0)

	MessageBox("There was an error submitting the form.", "BrowserSubmitForm", MB_OK);

if (iret == -1)

	MessageBox("There is not a form to submit.", "BrowserSubmitForm", MB_OK);

This example submits the active form and displays a message if there is an error. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserClickFormButton, BrowserLaunchIE, BrowserResetForm, BrowserSetActiveForm, BrowserWaitDocumentComplete, BrowserWaitDocumentInteractive

�BrowserWaitDocumentComplete

The BrowserWaitDocumentComplete function waits until the browser has finished downloading a web page.

int BrowserWaitDocumentComplete(

HBROWSER hbrowser,	// the handle of the browser window

int milliseconds	// the amount of time to wait, in milliseconds

);

Parameters

hbrowser

The handle of the browser window.

milliseconds

The amount of time in milliseconds to wait for the web page to finish downloading.

Return Values

The BrowserWaitDocumentComplete function returns TRUE (non-zero) if the web page has finished downloading. The BrowserWaitDocumentComplete function returns FALSE (zero) if there was an error waiting for the web page to finish downloading, the amount of time to wait has expired or the user selected “Continue”.

Remarks

This function is useful to wait for a web page to download before following a link, setting form fields or sending keystrokes to the browser window.

This function can only work with Microsoft Internet Explorer 4 or above.

There are 1000 milliseconds per second.

Example

if (!BrowserNavigate(hBrowserIE, "www.clrsoftware.com"))

	MessageBox("There was an error navigating to the url.", "BrowserNavigate", MB_OK);

if (!BrowserWaitDocumentComplete(hBrowserIE, 60000))

	MessageBox("The web page has not finished downloading.", "BrowserWaitDocumentComplete", MB_OK);

This example navigates to the www.clrsoftware.com web page and waits 60 seconds for the page to finish downloading before continuing on. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserIsDocumentComplete, BrowserIsDocumentInteractive, BrowserLaunchIE, BrowserNavigate, BrowserWaitDocumentInteractive

�BrowserWaitDocumentInteractive

The BrowserWaitDocumentInteractive function waits until the browser is ready to accept input.

int BrowserWaitDocumentInteractive(

HBROWSER hbrowser,	// the handle of the browser window

int milliseconds	// the amount of time to wait, in milliseconds

);

Parameters

hbrowser

The handle of the browser window.

milliseconds

The amount of time in milliseconds to wait for the web page to be ready to accept input.

Return Values

The BrowserWaitDocumentInteractive function returns TRUE (non-zero) if the web page is ready to accept input. The BrowserWaitDocumentInteractive function returns FALSE (zero) if there was an error waiting for the web page to finish downloading, the amount of time to wait has expired or the user selected “Continue”.

Remarks

This function is useful to wait for a web page to download before following a link, setting form fields or sending keystrokes to the browser window.

Just because the browser is ready for input does not necessarily mean that the page objects (links, form fields, etc.) exist. It may take a little while for the browser to render the objects and make them available.

This function can only work with Microsoft Internet Explorer 4 or above.

There are 1000 milliseconds per second.

Example

if (!BrowserNavigate(hBrowserIE, "www.clrsoftware.com"))

	MessageBox("There was an error navigating to the url.", "BrowserNavigate", MB_OK);

if (!BrowserWaitDocumentInteractive(hBrowserIE, 60000))

	MessageBox("The web page has not finished downloading.", "BrowserWaitDocumentInteractive", MB_OK);

This example navigates to the www.clrsoftware.com web page and waits 60 seconds for the page to be ready for input before continuing on. hBrowserIE is a handle to a browser window (HBROWSER) opened with the BrowserLaunchIE function.

See Also

BrowserIsDocumentComplete, BrowserIsDocumentInteractive, BrowserLaunchIE, BrowserNavigate, BrowserWaitDocumentComplete

�BrowseURL

The BrowseURL function opens your web browser to the specified web page.

int BrowseURL(

string sURL,	// the URL to open

int bNewWindow	// open in a new browser window or an existing browser window (optional)

);

Parameters

sURL

The URL to open.

bNewWindow

If TRUE (non-zero), open the URL in a new browser window.

If FALSE (zero), open the URL in an existing browser window. If a browser window is not already open, a new browser window will be opened. This is the default value if the parameter is not specified.

Return Values

The BrowseURL function returns TRUE (non-zero) if the URL was opened. The BrowseURL function returns FALSE (zero) if the URL was not opened.

Remarks

The BrowseURL function tests to see if you are currently connected to the Internet. If you are not connected to the Internet and you are not currently working off-line, the function will return FALSE (zero).

Example

if (BrowseURL("http://www.clrsoftware.com", TRUE))

	MessageBox("The CLR Software home page was opened in a new window.", "BrowseURL", MB_OK);

else

	MessageBox("Unable to open the CLR Software home page. You are probably not connected to the Internet.", "BrowseURL", MB_OK);

This example opens the CLR Software home page in a new browser window and displays the appropriate message box.

See Also

IsConnectedToInternet

�CheckDlgButton

The CheckDlgButton function checks or unchecks a check box on a dialog box. You can identify the check box control by using the text or the id.

int CheckDlgButton(

string text,	// the text of the check box control

int setting	// the setting to make the check box

);

int CheckDlgButton(

int id,	// the id of the check box control

int setting	// the setting to make the check box

);

Parameters

text

The exact text of the check box control to set.

id

The id of the check box control to set.

setting

The setting to make the check box.

BST_CHECKED	Put a check mark in the check box.

BST_UNCHECKED	Remove the check mark from the check box.

Return Values

The CheckDlgButton function returns TRUE (non-zero) if the check box was found and set. The CheckDlgButton function returns FALSE (zero) if the check box was not found.

Remarks

The CheckDlgButton waits for one second for the check box to become visible and enabled.

When setting a radio button control to BST_CHECKED, be sure to also set the other radio controls to BST_UNCHECKED.

If there is an accelerator key associated with the check box, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Enable” is displayed as “Enable” on the dialog box.

You can use the Window Information Finder command to get the edit control id.

This function does not work with check boxes on a web page. Use the browser control function BrowserSetFormField instead.

Example

if (CheckDlgButton("&Password Protect", BST_CHECK))

	MessageBox("The Password Protect check box is now checked.", "CheckDlgButton", MB_OK);

else

	MessageBox("The Password Protect check box does not exist.", "CheckDlgButton", MB_OK);

This example places a check mark on the Password Protect check box and displays the appropriate message box.

�Chr

The Chr function converts an integer ASCII value to a character. For example: Chr(65) = “A”.

string Chr(

int n	// the ASCII value to convert

);

Parameters

n

The ASCII value to convert to a character.

Return Values

The Chr function returns the character of the ASCII value.

Remarks

This command is the opposite of the ASCII() function.

Example

MessageBox("Chr(65) = " + Chr(65), "Chr", MB_OK);

This example displays the ASCII value of 65, which is the letter A.

See Also

ASCII

�ClickButton

The ClickButton function simulates pressing a button control. You can identify the button by using the text on the button or the id.

int ClickButton(

string text	// the text on the button

);

int ClickButton(

int id	// the id of the button

);

Parameters

text

The text on the button.

id

The id of the button.

Return Values

The ClickButton function returns TRUE (non-zero) if the button is found and pressed. The ClickButton function returns FALSE (zero) if the button is not found.

Remarks

The ClickButton waits for one second for the button to become visible and enabled.

If there is an accelerator key associated with the button, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Close” is displayed as “Close” on the dialog box.

You can use the Window Information Finder command to get the button control id.

This function does not work with buttons on a web page. Use the browser control function BrowserClickFormButton instead.

Example

if (ClickButton("OK"))

	MessageBox("The OK button was pressed.", "Click", MB_OK);

else

	MessageBox("The OK button was not pressed.", "Click", MB_OK);

This example presses the OK button and displays the appropriate message box.

�CloseFile

The CloseFile function closes a file opened with the OpenFile function.

int CloseFile(

HFILE file	// the file to close

);

Parameters

file

The handle to the file to close.

Return Values

The CloseFile function returns TRUE (non-zero) if the function was successful. The CloseFile function returns FALSE (zero) if there was an error closing the file.

Remarks

Files are open using exclusive file sharing access. That is, no other scripts or programs can access the file until the file is closed or the script exits.

Example

HFILE fp = OpenFile("test.txt", FILE_READ);

if (fp == NULL)

	{

	MessageBox("There was an error opening the file test.txt.");

	return;

	}

// do something

CloseFile(fp);

This example opens the file “test.txt” and displays a message if there was an error opening the file. It then closes the file.

See Also

OpenFile

�ComboBox_GetCount

The ComboBox_GetCount function returns the number of items in a combo box. You can identify the combo box control by using the text label or the id.

int ComboBox_GetCount(

string label	// the text label before the combo box control

);

int ComboBox_GetCount(

int id	// the id of the combo box control

);

Parameters

label

The static text label before or above the combo box control to count.

id

The id of the combo box control to count.

Return Values

The ComboBox_GetCount function returns the number of items in the combo box control. If there is an error finding the combo box, -1 is returned.

Remarks

The ComboBox_GetCount waits for one second for the static text label and the combo box control to become visible.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the control id.

This function does not work with combo boxes on a web page.

Example

int n = ComboBox_GetCount(1000);

MessageBox("Number of items in the combo box: "+itoa(n), "ComboBox_GetCount", MB_OK);

This example displays the number of items in the combo box with id number 1000 in a message box.

See Also

ListBox_GetCount

�ComboBox_GetText

The ComboBox_GetText function returns the text of an item in a combo box. You can identify the combo box control by using the text label or the id.

string ComboBox_GetText(

string label,	// the text label before the combo box control

int index	// the index of the item (optional)

);

string ComboBox_GetText(

int id,	// the id of the list box control

int index	// the index of the item (optional)

);

Parameters

label

The static text label before or above the combo box control.

id

The id of the combo box control.

index

The zero-based index of the combo box item. A value of –1 will return the currently selected text. This parameter is optional. The default value is –1.

Return Values

The ComboBox_GetText function returns the text of an item in the combo box control. If there is an error, an empty string is returned.

Remarks

The ComboBox_GetText waits for one second for the static text label and the combo box control to become visible.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the control id.

This function does not work with combo boxes on a web page.

Example

string text = ComboBox_GetText(1000);

MessageBox("The currently selected text is "+text, "ComboBox_GetText", MB_OK);

This example displays the currently selected text in the combo box with id number 1000.

See Also

ListBox_GetText

�ComboBox_SelectString

The ComboBox_SelectString function selects text in a combo box control. You can identify the combo box control by using the text label or the id.

int ComboBox_SelectString(

string label,	// the text label before the combo box control

string text,	// the text to select

int option	// select options (optional)

);

int ComboBox_SelectString(

int id,	// the id of the combo box control

string text,	// the text to select

int option	// select options (optional)

);

Parameters

label

The static text label before or above the combo box control to find which combo box control to set.

id

The id of the combo box control to find which combo box control to set.

text

The text to select.

option

The following options can be used when setting the dialog box edit control. This parameter is optional. The default is no options.

SDI_SENDCHANGE	Send a change message (CBN_SELCHANGE) to the parent window after selecting the text.

Return Values

The ComboBox_SelectString function returns TRUE (non-zero) if the text is selected. The ComboBox_SelectString function returns FALSE (zero) if the text is not selected.

Remarks

The ComboBox_SelectString waits for one second for the static text label and the combo box control to become visible and enabled.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the edit control id.

This function does not work with combo boxes on a web page. Use the browser control function BrowserSetFormField instead.

Example

if (ComboBox_SelectString("&Combo Box:", "Item 1"))

	MessageBox("Item 1 was selected.", "ComboBox_SelectString", MB_OK);

else

	MessageBox("There was an error finding the combo box or the string is not in the list.", "ComboBox_SelectString", MB_OK);

This example selects Item 1 in the combo box control and displays the appropriate message box.

See Also

ListBox_SelectString

�CopyFile

The CopyFile function copies an existing file to a new file.

int CopyFile(

string existingfilename,	// the name of the existing file

string newfilename	// the name of the new file

);

Parameters

existingfilename

The name of the existing file.

newfilename

The name of the new file.

Return Values

The CopyFile function returns TRUE (non-zero) if the file was successfully copied. The CopyFile function returns FALSE (zero) if there was an error copying the file.

Remarks

If the new file name already exists, it will be overwritten. To test for the existence of a file, use the FileExists function.

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

if (CopyFile("c:\\temp\\trash.txt", "c:\\temp\\garbage.txt"))

	MessageBox("The file trash.txt was copied to garbage.txt.", "CopyFile", MB_OK);

else

	MessageBox("There was an error copying the file trash.txt to garbage.txt.", "CopyFile", MB_OK);

This example copies the file c:\temp\trash.txt to the file c:\temp\garbage.txt and displays the appropriate message box.

See Also

AppendFileString, CreateFile, DeleteFile, FileExists

�CopyToClipboard

The CopyToClipboard function copies text to the Clipboard.

int CopyToClipboard(

string text	// the text to copy to the Clipboard

);

Parameters

text

The text to copy to the Clipboard.

Return Values

The CopyToClipboard function returns TRUE (non-zero) if the text was copied successfully to the Clipboard. The CopyToClipboard function returns FALSE (zero) if there was an error copying the text to the Clipboard.

Example

if (CopyToClipboard("Hi"))

	MessageBox("The text \"Hi\" is on the Clipboard.", "Clipboard", MB_OK);

else

	MessageBox("There was an error copying the text to the Clipboard.", "Clipboard", MB_OK);

MB_OK);

This example copies the text "Hi" to the Clipboard and displays the appropriate message box if the copy was successful.

See Also

EmptyClipboard, GetClipboardText

�CreateFile

The CreateFile function creates a new file. This function fails if the specified file already exists. Use the function FileExists to test if the file already exists.

int CreateFile(

string filename	// the name of the file to create

);

Parameters

filename

The name of the file to create.

Return Values

The CreateFile function returns TRUE (non-zero) if the file was created. The CreateFile function returns FALSE (zero) if the file was not created.

Remarks

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

if (CreateFile("c:\\temp\\trash.txt"))

	MessageBox("The file trash.txt was created in the c:\\temp folder.", "CreateFile", MB_OK);

else

	MessageBox("The file trash.txt was not created.", "CreateFile", MB_OK);

This example creates the file trash.txt in the c:\temp folder and displays the appropriate message box.

See Also

AppendFileString, CopyFile, DeleteFile, FileExists

�CreateFolder

The CreateFolder function creates a new file folder.

int CreateFolder(

string foldername	// the name of the folder to create

int createtree	// option to create the entire folder tree (optional)

);

Parameters

foldername

The name of the folder to create.

createtree

The option to create the entire folder tree. If TRUE, the entire folder tree is created if any of the parent folders do not exist. If FALSE, the parent folder of the new folder must exist. This parameter is optional. The default value is FALSE.

Return Values

The CreateFolder function returns TRUE (non-zero) if the folder was created. The CreateFolder function returns FALSE (zero) if there was an error creating the folder.

Remarks

If the folder already exists, this function will fail. Use the function FolderExists to test if a folder already exists.

When specifying a full path to a folder, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\system”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/system”.

Example

if (CreateFolder("c:\\temp"))

	MessageBox("The folder c:\\temp was created.", "CreateFolder", MB_OK);

else

	MessageBox("There was an error creating the folder c:\\temp.", "CreateFolder", MB_OK);

This example creates a new folder c:\temp and displays the appropriate message box.

See Also

DeleteFolder, FolderExists

�CurrentTimeString

The CurrentTimeString function returns the current time as a string. The format is identical to the ‘C’ run-time function strftime().

int CurrentTimeString(

string format	// the format of the time to return (optional)

);

Parameters

format

The format of the time to return. The format string consists of formatting codes. Formatting codes precede with the percent sign character (%). Characters that do not begin with % are returned unchanged. This parameter is optional. The default value is a short date and time represented for your current locale, “%x %X”.

The formatting codes are as follows:

%a	Abbreviated weekday name

%A	Full weekday name

%b	Abbreviated month name

%B	Full month name

%c	Short date and time representation for current locale

%d	Day of the month as a number (01-31)

%H	Hour in 24 hour format (00-23)

%I	Hour in 12 hour format (01-12)

%j	Day of the year as a number (001-366)

%m	Month as a number (01-12)

%M	Minute as a number (00-59)

%p	A.M./P.M. for 12 hour clock

%S	Second as a number (00-59)

%U	Week of the year as a number with Sunday as the first day of the week (00-53)

%w	Weekday as a number (0-6, Sunday is 0)

%W	Week of the year as a number with Monday as the first day of the week (00-53)

%x	Short date representation for current locale

%X	Time representation for current locale

%y	Year without century as a number (00-99)

%Y	Year with century as a number

%z, %Z	Time zone name or abbreviation, no characters if time zone is unknown

%%	Percent sign

The pound sign (#) may prefix the formatting code to alter the meaning of the code as follows:

%#a, %#A, %#b, %#B, %#p, %#X, %#z, %#Z, %#%�# flag is ignored.��%#c�Long date and time representation for current locale.��%#x�Long date representation for current locale.��%#d, %#H, %#I, %#j, %#m, %#M, %#S, %#U, %#w, %#W, %#y, %#Y�Remove leading zeros, if any.��

Return Values

The CurrentTimeString function returns the current time as a string. If there is an error formatting the current time, the returned string will be empty.

Remarks

The maximum length of a returned time string is 128 characters.

This function is useful for time stamping log files.

Example

MessageBox("The current date and time is: "+CurrentTimeString("%c"), "CurrentTimeString", MB_OK);

This example displays the current date and time in a message box.

�DeleteFile

The DeleteFile function deletes an existing file. This function fails if the specified file does not exist. Use the function FileExists to test if the file already exists.

int DeleteFile(

string filename	// the name of the file to delete

);

Parameters

filename

The name of the file to delete.

Return Values

The DeleteFile function returns TRUE (non-zero) if the file was deleted. The DeleteFile function returns FALSE (zero) if the file was not deleted.

Remarks

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

if (DeleteFile("c:\\temp\\trash.txt"))

	MessageBox("The file trash.txt was deleted from the c:\\temp folder.", "DeleteFile", MB_OK);

else

	MessageBox("The file trash.txt was not deleted.", "DeleteFile", MB_OK);

This example deletes the file trash.txt from the c:\temp folder and displays the appropriate message box.

See Also

AppendFileString, CopyFile, CreateFile, FileExists

�EmptyClipboard

The EmptyClipboard function empties the contents of the Clipboard.

int EmptyClipboard();

Parameters

There are no parameters.

Return Values

The EmptyClipboard function returns TRUE (non-zero) if the Clipboard was emptied. The EmptyClipboard function returns FALSE (zero) if there was an error emptying the Clipboard contents.

Example

if (EmptyClipboard())

	MessageBox("The Clipboard is now empty.", "Clipboard", MB_OK);

else

	MessageBox("There was an error emptying the Clipboard contents.", "Clipboard", MB_OK);

MB_OK);

This example empties Clipboard contents and displays the appropriate message box if the contents were emptied.

See Also

CopyToClipboard, GetClipboardText

�DeleteFolder

The DeleteFolder function deletes an existing empty file folder.

int DeleteFolder(

string foldername	// the name of the folder to delete

);

Parameters

foldername

The name of the empty folder to delete.

Return Values

The DeleteFolder function returns TRUE (non-zero) if the folder was deleted. The DeleteFolder function returns FALSE (zero) if there was an error deleting the folder.

Remarks

The function will fail if the folder contains any files or sub-folders.

If the folder does not exist, this function will fail. Use the function FolderExists to test if a folder already exists.

When specifying a full path to a folder, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\system”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/system”.

Example

if (DeleteFolder("c:\\temp"))

	MessageBox("The folder c:\\temp was deleted.", "DeleteFolder", MB_OK);

else

	MessageBox("There was an error deleting the folder c:\\temp.", "DeleteFolder", MB_OK);

This example deletes the folder c:\temp and displays the appropriate message box.

See Also

CreateFolder, FolderExists

�DownloadUrl

The DownloadUrl function downloads a file over the Internet using FTP, HTTP or Gopher.

int DownloadUrl(

string source,	// the URL of the file to download

string destination,	// the destination file name

int options	// connection and transfer options (optional)

);

Parameters

source

The URL of the file to download. This can be either FTP or HTTP.

destination

The file name of the local file.

options

The following options are available. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is non-passive FTP and download using a temporary file.

DOWNLOAD_CONNECT_PASSIVE	Use passive FTP semantics for FTP downloads.

DOWNLOAD_NO_TEMP_FILE	Do not download to a temporary file first. Download directly to the destination file. If there is an error downloading the file, the destination file will not be complete.

Return Values

The DownloadUrl function returns one of the following values:

Value	Description

1	Transfer complete.

0	Unknown error.

-1	Invalid or missing parameter value.

-2	Cannot open Internet session

-3	Error opening the source file.

-4	Error reading the source file.

-5	Error opening the destination file.

-6	Error writing to the destination file.

-7	Error renaming existing file.

-8	Error renaming the temporary file.

-9	Error deleting existing temporary file.

-10	Error deleting the temporary file.

-11	Error renaming existing temporary file back.

Remarks

The URL must begin with ftp://, http://, https://, or gopher://.

The destination directory must already exist.

When performing the transfer, a temporary file named “clrdownloadurl0.tmp” is created. When the transfer is complete, the temporary file is renamed to the actual file. This preserves an existing file in case there is an error during the transfer. If there is an error during the transfer, the temporary file is deleted. If you do not want to utilize this safety measure, use the option DOWNLOAD_NO_TEMP_FILE.

When specifying the path to the destination file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int iret = DownloadUrl("http://clrsoftware.com", "c:\\temp\\homepage.htm");

if (iret == 1)

	MessageBox("The file was downloaded.");

else

	MessageBox("There was an error downloading the file. Error "+itoa(iret));

This example downloads the home page for the web site clrsoftware.com to the local temp folder. A message box is displayed when the download is completed.

See Also

FtpDownload, FtpDownloadUrl

�EnableScreenSaver

The EnableScreenSaver function enables or disables the screen saver.

void EnableScreenSaver(

int enable	// enable/disable

);

Parameters

enable

Set to TRUE (non-zero) to enable the screen saver or FALSE (zero) to disable the screen saver..

Return Value

There is no return value.

Remarks

If you disable the screen saver, be sure to enable the screen saver before exiting the script.

This function is useful if your script takes a long time and your screen saver activates while the script is still running.

Example

EnableScreenSaver(FALSE);

This example disables the screen saver.

See Also

IsScreenSaverRunning, StopScreenSaver

�exit

The exit function immediately terminates running the script.

void exit(

int returnvalue	// the return value (optional)

);

Parameters

returnvalue

The value returned to the calling program. This parameter is optional. The default value is 0.

Return Values

The exit function does not return a value.

Remarks

Return values less than zero (0) are pre-defined as run-time or compiler errors. Use return values greater than zero (0) for user defined return values.

To get the return value in a batch file, run CLR Script using start /w and test the return value using the errorlevel batch variable. For example:

start /w clrscrpt /r test.csp

if errorlevel 1 goto one

goto allok

:one

echo Error 1

:allok

Example

exit(1);

This example exits the script and returns 1 to the calling program.

�ExitWindows

The ExitWindows function exits Windows by logging off the current user, rebooting the computer or shutting down the computer.

void ExitWindows(

int flag	// the type of exit (optional)

);

Parameters

flag

The type of exit. This parameter is optional. The default value is EWX_LOGOFF.

EWX_LOGOFF	Logoff the current user.

EWX_SHUTDOWN	Shutdown the computer.

EWX_REBOOT	Reboot the computer.

Return Values

There is no return value.

Remarks

The script will continue to run after all the applications have exited. This is only useful for the EWX_LOGOFF exit type.

Example

ExitWindows(EWX_REBOOT);

This example reboots the computer.

�FileEOF

The FileEOF function checks to see if the file pointer is currently at the end of the file.

int FileEOF(

HFILE file	// the file to check

);

Parameters

file

The handle to the file to check.

Return Values

The FileEOF function returns TRUE (non-zero) if the file pointer is currently at the end of the file. The FileEOF function returns FALSE (zero) if the file pointer is not at the end of the file or there was an error.

Remarks

This function is useful when reading from files to make sure you do not read past the end of the file.

Example

HFILE fp = OpenFile("test.txt", FILE_READ);

if (fp == NULL)

	{

	MessageBox("There was an error opening the file test.txt.");

	return;

	}

string sText;

while (!FileEOF(fp))

	sText = sText + ReadFileString(fp) + "\n";

CloseFile(fp);

This example reads in an entire text file into the string sText.

See Also

OpenFile

�FileExists

The FileExists function tests to see if a specific file exists.

int FileExists(

string filename	// the name of the file to test

);

Parameters

filename

The name of the file to test for existence. The file name cannot contain wild card characters, ‘*’ and ‘?’.

Return Values

The FileExists function returns TRUE (non-zero) if the file exists. The FileExists function returns FALSE (zero) if the file does not exist.

Remarks

If you want to see if a wild card file exists, for example “*.txt”, use the GetFolderListing function instead and check if any listings are returned.

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

if (FileExists("c:\\temp\\trash.txt"))

	MessageBox("The file trash.txt exists in the c:\\temp folder.", "FileExists", MB_OK);

else

	MessageBox("The file trash.txt does not exist in the c:\\temp folder.", "FileExists", MB_OK);

This example tests to see if the file trash.txt exists in the c:\temp folder and displays the appropriate message box.

See Also

AppendFileString, CopyFile, CreateFile, DeleteFile, FolderExists

�FindString

The FindString function returns the index of a sub-string within a string.

int FindString(

string string1,	// the string to search

string string2,	// the sub-string to find

int start	// the character index to start at (optional)

);

Parameters

string1

The string to search.

string2

The sub-string to find.

start

The character index to start at. This parameter is optional. The default is 0, to start at the beginning of the string.

Return Values

The FindString function returns the index of a sub-string within a string. If the sub-string is not found, the return value is -1.

Remarks

The index of the first character is 0.

Example

int i = FindString("abcde", "bc");

MessageBox(itoa(i), "FindString", MB_OK);

This example displays the number 1.

int i = FindString("abcde", "f");

MessageBox(itoa(i), "FindString", MB_OK);

This example displays the number -1.

�FindWindow

The FindWindow function sees if a window is open that matches either the class name or window title.

int FindWindow(

string classname,	// the class name of the window to find

string title	// the title bar text of the window to find

);

Parameters

classname

The class name of the window to find.

title

The title bar text of the window to find.

Return Values

The FindWindow function returns TRUE (non-zero) if a window is found that has the class name and/or window title bar text. The FindWindow function returns FALSE (zero) if no matching window is found.

Remarks

If both a class name and a window title are used, both must match. Otherwise, only one of the two parameters needs to match. Enter an empty string "" to match any window.

Example

if (FindWindow("MSMoney Frame", ""))

	MessageBox("Microsoft Money is running.", "Find", MB_OK);

else

	MessageBox("Microsoft Money is not running.", "Find", MB_OK);

This example sees if Microsoft Money is running by finding it’s class name and displays the appropriate message box.

See Also

SetForegroundWindow, SetForegroundWindowTitleSub

�FolderExists

The FolderExists function tests to see if a folder exists.

int FolderExists(

string foldername	// the name of the folder to test

);

Parameters

foldername

The name of the folder to test for existence.

Return Values

The FolderExists function returns TRUE (non-zero) if the folder exists. The FolderExists function returns FALSE (zero) if the folder does not exist.

Remarks

When specifying a full path to a folder, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\system”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/system”.

Example

if (FolderExists("c:\\temp"))

	MessageBox("The folder c:\\temp exists.", "FolderExists", MB_OK);

else

	MessageBox("The folder c:\\temp does not exist.", "FolderExists", MB_OK);

This example tests to see if the folder c:\temp exists and displays the appropriate message box.

See Also

FileExists

�FtpDelete

The FtpDelete function deletes a file over the Internet using FTP.

int FtpDelete(

string server,	// the server domain name

string directory,	// the directory name

string filename,	// the file name to delete

string username,	// the user name

string password,	// the password

int options	// connection options (optional)

);

Parameters

server

The domain name of the server.

directory

The directory name of the server.

filename

The file name of the file to delete.

username

The user name of the FTP site.

password

The password of the FTP site

options

The following options are available for the FTP connection. This parameter is optional. The default is non-passive.

FTP_CONNECT_PASSIVE	Use passive FTP semantics.

Return Values

The FtpDelete function returns one of the following values:

Value	Description

1	Delete complete.

0	Unknown error.

-1	Invalid or missing parameter value.

-2	Cannot open Internet session

-3	Error setting the FTP directory.

-4	Error connecting to the server.

-5	Error deleting the file.

Remarks

If you want to use a port other than the default FTP port 21, you can specify the port number in the server parameter. The port number follows a colon after the domain name. For example: ftp.clrsoftware.com:21.

Example

int iret = FtpDelete("ftp.clrsoftware.com", "temp", "temp.txt", "clrscript", "password");

if (iret == 1)

	MessageBox("The file was deleted.");

else

	MessageBox("There was an error deleting the file. Error "+itoa(iret));

This example deletes the file temp.txt in the server’s temp folder. A message box is displayed when the rename is completed.

�FtpDownload

The FtpDownload function downloads a file over the Internet using FTP.

int FtpDownload(

string sourceserver,	// the source server domain name

string sourcedirectory,	// the source directory name

string sourcefilename,	// the source file name

string destination,	// the destination file name

string username,	// the user name

string password,	// the password

int transfertype,	// the type of transfer

int options	// connection and transfer options (optional)

);

Parameters

sourceserver

The domain name of the source server.

sourcedirectory

The directory name of the source server.

sourcefilename

The file name of the source file.

destination

The file name of the local file. If empty, the file name will be the same as the source file name.

username

The user name of the FTP site.

password

The password of the FTP site

transfertype

The type of file to transfer. This can be either binary or ASCII. ASCII transfers translate carriage returns and line feeds appropriately for the local machine.

FTP_TRANSFER_TYPE_ASCII	ASCII transfer

FTP_TRANSFER_TYPE_BINARY	Binary transfer

options

The following options are available for the FTP transfer. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is non-passive and download using a temporary file.

FTP_CONNECT_PASSIVE	Use passive FTP semantics.

FTP_NO_TEMP_FILE	Do not download to a temporary file first. Download directly to the destination file. If there is an error downloading the file, the destination file will not be complete.

Return Values

The FtpDownload function returns one of the following values:

Value	Description

1	Transfer complete.

0	Unknown error.

-1	Invalid or missing parameter value.

-2	Cannot open Internet session

-3	Error setting the source FTP directory.

-4	Error reading the source file.

-5	Error opening the source file.

-6	Error connecting to the server.

-7	Error opening the destination file.

-8	Error writing to the destination file.

-9	Error renaming the temporary file.

-10	Error deleting the temporary file.

-11	Error renaming existing file.

-12	Error deleting existing temporary file.

-13	Error renaming existing temporary file back.

Remarks

The destination directory must already exist.

When performing the transfer, a temporary file named “clrftpdownload0.tmp” is created. When the transfer is complete, the temporary file is renamed to the actual file. This preserves an existing file in case there is an error during the transfer. If there is an error during the transfer, the temporary file is deleted. If you do not want to utilize this safety measure, use the option FTP_NO_TEMP_FILE.

If you want to use a port other than the default FTP port 21, you can specify the port number in the sourceserver parameter. The port number follows a colon after the domain name. For example: ftp.clrsoftware.com:21.

When specifying the path to the destination file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int iret = FtpDownload("ftp.clrsoftware.com", "temp", "temp.txt", "c:\\temp\\temp.txt", "clrscript", "password", FTP_TRANSFER_TYPE_ASCII);

if (iret == 1)

	MessageBox("The file was downloaded.");

else

	MessageBox("There was an error downloading the file. Error "+itoa(iret));

This example downloads the file temp.txt from the server’s temp folder to the local temp folder. A message box is displayed when the download is completed.

See Also

DownloadUrl, FtpDownloadUrl

�FtpDownloadUrl

The FtpDownloadUrl function downloads a file over the Internet using FTP.

int FtpDownloadUrl(

string url,	// the URL of the file to download

string destination,	// the destination file name

string username,	// the user name

string password,	// the password

int transfertype,	// the type of transfer

int options	// connection and transfer options (optional)

);

Parameters

url

The URL of the file name to download.

destination

The file name of the local file. If empty, the file name will be the same as the source file name.

username

The user name of the FTP site.

password

The password of the FTP site

transfertype

The type of file to transfer. This can be either binary or ASCII. ASCII transfers translate carriage returns and line feeds appropriately for the local machine.

FTP_TRANSFER_TYPE_ASCII	ASCII transfer

FTP_TRANSFER_TYPE_BINARY	Binary transfer

options

The following options are available for the FTP transfer. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is non-passive and download using a temporary file.

FTP_CONNECT_PASSIVE	Use passive FTP semantics.

FTP_NO_TEMP_FILE	Do not download to a temporary file first. Download directly to the destination file. If there is an error downloading the file, the destination file will not be complete.

Return Values

The FtpDownloadUrl function returns one of the following values:

Value	Description

1	Transfer complete.

0	Unknown error.

-1	Invalid or missing parameter value.

-2	Cannot open Internet session

-3	Error setting the source FTP directory.

-4	Error reading the source file.

-5	Error opening the source file.

-6	Error connecting to the server.

-7	Error opening the destination file.

-8	Error writing to the destination file.

-9	Error renaming the temporary file.

-10	Error deleting the temporary file.

-11	Error renaming existing file.

-12	Error deleting existing temporary file.

-13	Error renaming existing temporary file back.

-14	Error parsing URL.

Remarks

The destination directory must already exist.

When performing the transfer, a temporary file named “clrftpdownload0.tmp” is created. When the transfer is complete, the temporary file is renamed to the actual file. This preserves an existing file in case there is an error during the transfer. If there is an error during the transfer, the temporary file is deleted. If you do not want to utilize this safety measure, use the option FTP_NO_TEMP_FILE.

When specifying the path to the destination file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int iret = FtpDownloadUrl("ftp.clrsoftware.com/temp/temp.txt", "c:\\temp\\temp.txt", "clrscript", "password", FTP_TRANSFER_TYPE_ASCII);

if (iret == 1)

	MessageBox("The file was downloaded.");

else

	MessageBox("There was an error downloading the file. Error "+itoa(iret));

This example downloads the file temp.txt from the server’s temp folder to the local temp folder. A message box is displayed when the download is completed.

See Also

DownloadUrl, FtpDownload

�FtpGetFolderListing

The FtpGetFolderListing function gets a listing of the files in an FTP folder.

string FtpGetFolderListing(

string server,	// the domain name of the FTP server

string username,	// the user name to log onto the server

string password,	// the password to log onto the server

string folder,	// the default folder on the server (optional)

string filename,	// the file names to list (optional)

int type	// the type of names to list (optional)

int options,	// options (optional)

);

Parameters

server

The domain name of the FTP server.

username

The user name to log onto the FTP server.

password

The password to log onto the FTP server.

folder

The default folder on the server. This parameter is optional. The default value is NULL and the root folder is used.

filename

The default file names to list. The file name can contain wild card characters ‘*’ and ‘?’. This parameter is optional. The default value is NULL and all file names will be listed.

type

The type of file names to list. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is GFL_FILES | GFL_FOLDERS | GFL_SORT, to list all the files and folders.

GFL_FILES	list files

GFL_FOLDERS	list folders

GFL_SORT	sort listing

options

The following options are available for the FTP connection. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is a non-passive connection.

FTP_CONNECT_PASSIVE	Use passive FTP semantics.

Return Values

The FtpGetFolderListing function returns the file names in the FTP folder. If there is an error, an error string will be returned starting with the text “ERROR:”.

Remarks

If you want to use a port other than the default FTP port 21, you can specify the port number in the server parameter. The port number follows a colon after the domain name. For example: ftp.clrsoftware.com:21.

When specifying a folder, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows*.*”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/*.*”.

Example

string list = FtpGetFolderListing("ftp.clrsoftware.com", "clrscript", "password", "temp", "*.htm", GFL_FILES, FTP_CONNECT_PASSIVE);

MessageBox(list, "ftp.clrsoftware.com\\temp");

This example displays all the web page file names on the ftp.clrsoftware.com server in the temp folder. The connection will use passive FTP semantics.

�FtpGetOpenFileName

The FtpGetOpenFileName function displays a dialog box for the user to select an FTP file to download.

string FtpGetOpenFileName(

string server,	// the domain name of the FTP server

string username,	// the user name to log onto the server

string password,	// the password to log onto the server

string folder,	// the default folder on the server (optional)

string filename,	// the default file name (optional)

int options,	// options (optional)

string title	// the title of the FTP open file dialog box (optional)

);

Parameters

server

The domain name of the FTP server.

username

The user name to log onto the FTP server.

password

The password to log onto the FTP server.

folder

The default folder on the server. This parameter is optional. The default value is NULL and the root folder is used.

filename

The default file name. This parameter is optional. The default value is NULL and no file name is set.

options

The following options are available for the FTP connection. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is a non-passive connection.

FTP_CONNECT_PASSIVE	Use passive FTP semantics.

title

The title of the dialog box. This parameter is optional. The default value is NULL and uses the default “FTP Open” title.

Return Values

The FtpGetOpenFileName function returns the selected file name URL. If the user cancels the dialog box or there is an error, an empty string is returned.

Remarks

The returned URL can be passed to the function FtpDownloadUrl to download the selected file.

If you want to use a port other than the default FTP port 21, you can specify the port number in the server parameter. The port number follows a colon after the domain name. For example: ftp.clrsoftware.com:21.

Example

string url = FtpGetOpenFileName("ftp.clrsoftware.com", "clrscript", "password", "temp", "", FTP_CONNECT_PASSIVE, "Select a file");

MessageBox("The selected file name URL is: "+url);

This example displays the FTP Open dialog box to download a file from the clrsoftware.com FTP server. The default folder is “temp”, connect using passive FTP semantics and the dialog box title is “Select a file”.

See Also

FtpDownloadUrl

�FtpRename

The FtpRename function renames a file over the Internet using FTP.

int FtpRename(

string server,	// the server domain name

string directory,	// the directory name

string oldfilename,	// the old file name

string newfilename,	// the new file name

string username,	// the user name

string password,	// the password

int options	// connection options (optional)

);

Parameters

server

The domain name of the server.

directory

The directory name of the server.

oldfilename

The old file name of the file.

newfilename

The new file name of the file.

username

The user name of the FTP site.

password

The password of the FTP site

options

The following options are available for the FTP connection. This parameter is optional. The default is non-passive.

FTP_CONNECT_PASSIVE	Use passive FTP semantics.

Return Values

The FtpRename function returns one of the following values:

Value	Description

1	Rename complete.

0	Unknown error.

-1	Invalid or missing parameter value.

-2	Cannot open Internet session

-3	Error setting the FTP directory.

-4	Error connecting to the server.

-5	Error renaming the file.

Remarks

If the new file name already exists, it will be overwritten with the old file.

If you want to use a port other than the default FTP port 21, you can specify the port number in the server parameter. The port number follows a colon after the domain name. For example: ftp.clrsoftware.com:21.

Example

int iret = FtpRename("ftp.clrsoftware.com", "temp", "temp.txt", "newname.txt", "clrscript", "password");

if (iret == 1)

	MessageBox("The file was renamed.");

else

	MessageBox("There was an error renaming the file. Error "+itoa(iret));

This example renames the file temp.txt to newname.txt in the server’s temp folder. A message box is displayed when the rename is completed.

�FtpUpload

The FtpUpload function uploads a file over the Internet using FTP.

int FtpUpload(

string source,	// the source file name

string destserver,	// the destination server domain name

string destdirectory,	// the destination directory name

string destfilename,	// the destination file name

string username,	// the user name

string password,	// the password

int transfertype,	// the type of transfer (optional)

int options	// connection and transfer options (optional)

);

Parameters

source

The file name of the local file.

destserver

The domain name of the destination server.

destdirectory

The directory name of the destination server.

destfilename

The file name of the destination file. If empty, use the same name as the source file.

username

The user name of the FTP site.

password

The password of the FTP site

transfertype

The type of file to transfer. This can be either binary or ASCII. If omitted, the transfer type will be guessed by seeing if any of the characters are 0 or greater than 127. If so, a binary transfer is assumed. ASCII transfers translate carriage returns and line feeds appropriately for the server machine.

FTP_TRANSFER_TYPE_ASCII	ASCII transfer

FTP_TRANSFER_TYPE_BINARY	Binary transfer

FTP_TRANSFER_TYPE_UNKNOWN	Guess the transfer type

options

The following options are available for the FTP transfer. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is non-passive and upload using a temporary file.

FTP_CONNECT_PASSIVE	Use passive FTP semantics.

FTP_NO_TEMP_FILE	Do not upload to a temporary file first. Upload directly to the destination file. If there is an error uploading the file, the destination file will not be complete.

Return Values

The FtpUpload function returns one of the following values:

Value	Description

1	Transfer complete.

0	Unknown error.

-1	Invalid or missing parameter value.

-2	Cannot open Internet session

-3	Error setting the destination FTP directory.

-4	Error reading the source file.

-5	Error opening the source file.

-6	Error connecting to the server.

-7	Error opening the destination file.

-8	Error writing to the destination file.

-9	Error renaming the temporary file.

-10	Error deleting the temporary file.

Remarks

The destination directory must already exist.

When performing the transfer, a temporary file named “clrftpupload0.tmp” is created. When the transfer is complete, the temporary file is renamed to the actual file. This preserves an existing file in case there is an error during the transfer. If there is an error during the transfer, the temporary file is deleted. If you do not want to utilize this safety measure or your system cannot perform the necessary rename of the temporary file, use the option FTP_NO_TEMP_FILE.

If you want to use a port other than the default FTP port 21, you can specify the port number in the destserver parameter. The port number follows a colon after the domain name. For example: ftp.clrsoftware.com:21.

When specifying the path to the source file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int iret = FtpUpload("c:\\temp\\temp.txt", "ftp.clrsoftware.com", "temp", "temp.txt", "clrscript", "password", FTP_TRANSFER_TYPE_ASCII);

if (iret == 1)

	MessageBox("The file was uploaded.");

else

	MessageBox("There was an error uploading the file. Error "+itoa(iret));

This example uploads the local file temp.txt to the server’s temp folder. A message box is displayed when the upload is completed.

�GetClipboardText

The GetClipboardText function gets the text contents of the Clipboard.

string GetClipboardText();

Parameters

There are no parameters.

Return Values

The GetClipboardText function returns the text that is residing on the Clipboard. If there is no text on the Clipboard, an empty string is returned.

Example

MessageBox(GetClipboardText(), "Clipboard Text Contents", MB_OK);

This example displays the text contents of the clipboard in a message box.

See Also

CopyToClipboard, EmptyClipboard

�GetDlgItemText

The GetDlgItemText function gets the text in a control. You can identify the control by using the text label or the id.

string GetDlgItemText(

string label	// the text label for the control

);

string SetDlgItemText(

int id	// the id of the control

);

Parameters

label

The static text label before or above the control to find which control to get.

id

The id of the control to find which control to get.

Return Values

The GetDlgItemText function returns the text in the control. If there is an error, an empty string is returned.

Remarks

The GetDlgItemText waits for one second for the static text label and the control to become visible.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the control id.

This function does not work with controls on a web page.

Example

MessageBox(GetDlgItemText("&Name:"));

This example displays the text in the Name edit control.

�GetEnvironmentVariable

The GetEnvironmentVariable function returns the value of the environment variable.

string GetEnvironmentVariable(

string name	// the name of the environment variable

);

Parameters

name

The name of the environment variable to retrieve.

Return Values

The GetEnvironmentVariable function returns the environment variable value as a string. If the environment variable does not exist, an empty string is returned.

Example

MessageBox("The current path is "+GetEnvironmentVariable("path"), "Path", MB_OK);

This example displays the current path.

�GetFileAttributes

The GetFileAttributes function gets the attributes of a file or directory.

int GetFileAttributes(

string filename	// the name of the file or directory

);

Parameters

filename

The name of the file or directory to get the attributes.

Return Values

The GetFileAttributes function returns the attributes of the file. The GetFileAttributes function returns -1 if there is an error getting the attributes. Possible return values are one or more of the following values combined with the ‘or’ operator ‘|’.

FILE_ATTRIBUTE_ARCHIVE	The file or directory is an archive.

FILE_ATTRIBUTE_DIRECTORY	The file is a directory.

FILE_ATTRIBUTE_HIDDEN	The file or directory is hidden.

FILE_ATTRIBUTE_NORMAL	The file or directory has no other attributes set. This attribute is valid only if used alone.

FILE_ATTRIBUTE_READONLY	The file or directory is read-only.

FILE_ATTRIBUTE_SYSTEM	The file or directory is a system file or directory.

Remarks

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int a = GetFileAttributes("filename.txt");

This example gets the attributes of the file “filename.txt” and stores them in the variable ‘a’.

See Also

SetFileAttributes

�GetFileSize

The GetFileSize function gets the size of a file.

int GetFileSize(

string filename	// the name of the file

);

Parameters

filename

The name of the file to get the size.

Return Values

The GetFileSize function returns the size of the file. The GetFileSize function returns -1 if there is an error getting the size.

Remarks

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int size = GetFileSize("filename.txt");

This example gets the size of the file “filename.txt” and stores the size in the variable ‘a’.

See Also

GetFileTimeString

�GetFileTimeString

The GetFileTimeString function gets the date and time of a file.

int GetFileTimeString(

string filename,	// the name of the file

string format	// the format of the date and time to return (optional)

);

Parameters

filename

The name of the file to get the date and time.

format

The format of the date and time to return. The format string consists of formatting codes. Formatting codes precede with the percent sign character (%). Characters that do not begin with % are returned unchanged. See the function CurrentTimeString for a list of formatting codes. This parameter is optional. The default is a short date and time represented in your current locale, “%x %X”.

Return Values

The GetFileTimeString function returns the date and time of the file as a string. The GetFileTimeString function returns an empty string (“”) if there is an error getting the date and time.

Remarks

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

string s = GetFileTimeString("filename.txt");

This example gets the date and time of the file “filename.txt” and stores the string in the variable ‘s’.

See Also

GetFileSize

�GetFolderListing

The GetFolderListing function returns a list of all the file and subfolder names in a folder.

int GetFolderListing(

string path,	// the path name to list

int type	// the type of names to list (optional)

);

Parameters

path

The path of the files and/or folders to list. The path name can contain wild card characters ‘*’ and ‘?’. For example: “c:\\windows*.*”

type

The type of file names to list. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is GFL_FILES | GFL_FOLDERS | GFL_SORT, to list all the files and folders.

GFL_FILES	list files

GFL_FOLDERS	list folders

GFL_SORT	sort listing

Return Values

The GetFolderListing function returns list of file and folder names separated by a new line character ‘\n’. If there is an error obtaining the list, an empty string is returned.

Remarks

When specifying a path, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows*.*”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/*.*”.

Example

string list = GetFolderListing("c:*.*");

MessageBox(list, "GetFolderListing", MB_OK);

This example displays all the files and folders in the root folder of the c-drive.

�GetForegroundWindowTitle

The GetForegroundWindowTitle function gets the current foreground window’s title bar text.

string GetForegroundWindowTitle();

Parameters

There are no parameters.

Return Values

The GetForegroundWindowTitle function returns the current foreground window’s title bar text.

Example

MessageBox(GetForegroundWindowTitle(), "Foreground Window Title", MB_OK);

This example displays the current foreground window’s title bar text in a message box.

See Also

VerifyActiveWindowTitle, VerifyActiveWindowTitleSub

�GetIPAddress

The GetIPAddress function gets the current IP address of the local host computer.

string GetIPAddress();

Return Values

The GetIPAddress function returns the all of the IP addresses of the local host computer. If there is an error, an empty string is returned.

Remarks

If there are multiple network cards installed in the local computer, more than one IP address will be returned. Each IP address will be separated by a semi-colon “;”.

Example

MessageBox(GetIPAddress(), "GetIPAddress", MB_OK);

This example displays the current IP address of the local host computer.

�GetMenuCommandStrings

The GetMenuComandStrings function gets all the menu command strings available for the current window.

string GetMenuCommandStrings();

Return Values

The GetMenuComandStrings function returns the all the menu command strings avaiable. If there is an error, or there are no menu commands, an empty string is returned.

Remarks

Depending upon how a program is written, the menu commands may not be available.

Example

MessageBox(GetMenuCommandStrings(), "GetMenuCommandStrings", MB_OK);

This example displays the available menu commands in the current foreground window.

See Also

GetMenuState

�GetMenuState

The GetMenuState function returns the state of a menu item on the current foreground window.

int GetMenuState(

string menucommand	// the menu command string

);

Parameters

menucommand

The menu command string to get the state. Separate the pop-up menus with a newline ‘\n’ character. For example: “File\nNew”.

Return Values

The GetMenuState function returns the state of the menu item. If there is an error getting the state, a -1 is returned. The following states are combined with the OR ‘|’ operator.

MF_CHECKED	The menu item is checked.

MF_DISABLED	The menu item is disabled.

MF_GRAYED	The menu item is grayed out.

Remarks

To figure out the exact string of a menu command, call the GetMenuCommandStrings function.

Most programs are written in such a way that the menu state is not changed until the menu needs to be displayed. So, you may need to display the menu before a menu state is changed. To quickly display the menu so the menu command states are updated, send 2 consecutive ALT keys. For example: SendKeys(“{altkey}{altkey}”);

Depending upon how a program is written, the menu commands may not be available.

Example

int state = GetMenuState("Edit\nCopy");

if (state & MF_GRAYED)

	MessageBox("The copy command is not available.");

else

	MessageBox("The copy command is available.");

This example displays if the copy command is available or not.

See Also

GetMenuCommandStrings

�GetOpenFileName

The GetOpenFileName function displays the standard Open File dialog box for the user to select a file.

string GetOpenFileName(

string defext,	// the default file extension (optional)

string filename,	// the default file name (optional)

int flags,	// dialog box options (optional)

string filter,	// the file type filters (optional)

string title	// the title of the open file dialog box (optional)

);

Parameters

defext

The default extension to add if no extension is entered. This parameter is optional. The default value is NULL and does not add an extension.

filename

The default file name. This parameter is optional. The default value is NULL and does not display a default file name when the dialog box is opened.

flags

The dialog box options. It can be one or more of the following options combined with the ‘or’ statement ‘|’. This parameter is optional. The default value is 0.

OFN_FILEMUSTEXIST	The selected file must exist. This option also implies that the path exists.

OFN_PATHMUSTEXIST	The selected path must exist.

filter

The file type filters. The filters are a series of a pair of strings separated by vertical bars “|”. The first string specifies the displayed text, and the second string specifies the file name filters. Multiple filters can be specified by separating the filters with a semicolon. The string ends in two vertical bars “||”. This parameter is optional. The default value is NULL and displays “All Files (*.*)”.

Examples:	“Text Files (*.txt)|*.txt||”

	“Image Files (*.bmp, *.gif, *.jpg)|*.bmp;*.gif;*.jpg|All Files (*.*)|*.*||”

title

The title of the dialog box. This parameter is optional. The default value is NULL and uses the default “Open” title.

Return Values

The GetOpenFileName function returns the selected file name. If the user cancels the dialog box or there is an error, an empty string is returned.

Example

string filename = GetOpenFileName("txt", "default.txt", OFN_FILEMUSTEXIST, "Text Files (*.txt)|*.txt||", "Select a file name");

MessageBox("The selected file name is: "+filename);

This example displays the standard Open File dialog box with the title “Select a file name”, uses the default extension “.txt”, starts with the default value of “default.txt”, and uses the filter for text files. The selected file name must also exist.

See Also

BrowseForFolder

�GetPixelColor

The GetPixelColor function returns the color of the display pixel at the specified coordinates.

int GetPixelColor(

int x,	// the x coordinate of the pixel

int y	// the y coordinate of the pixel

);

Parameters

x

The x (horizontal) coordinate of the pixel on the display.

y

The y (vertical) coordinate of the pixel on the display.

Return Values

The return value is the RGB color value of the pixel on the display. If the coordinates are outside the range of the display, a value of -1 will be returned.

Remarks

The returned color value can be converted into the separate red, green and blue components by using the following formulas.

red = (color & 16711680) / 65536;

green = (color & 65280) / 256;

blue = color & 255;

An RGB color value can be calculated using the following formula. The values for red, green and blue must be between 0 and 255.

color = red * 65536 + green * 256 + blue;

Example

int color = GetPixelColor(0, 0);

This example gets the color of the pixel on the upper left corner of the display.

�GetUserName

The GetUserName function returns the name of the currently logged on user.

string GetUserName();

Parameters

There are no parameters.

Return Values

The GetUserName function returns the name of the currently logged on user.

Remarks

This function is useful for running specific scripts based on who is logged on the machine.

Example

MessageBox("The name of the current user is "+GetUserName(), "GetUserName", MB_OK);

This example displays the name of the current user.

�InputString

The InputString function asks the user for a string.

string InputString(

string prompt,	// the prompt

string defaultvalue,	// the default string (optional)

string title,	// the title of the input string dialog box (optional)

int milliseconds,	// the timeout value (optional)

int defaultbutton	// the default button (optional)

);

Parameters

prompt

A text string to prompt the user what information should be entered.

defaultvalue

The default string to initialize the input. This parameter is optional. The default value is an empty string “”.

title

The title of the input string dialog box. This parameter is optional. The default title is “CLR Script”.

milliseconds

The amount of time in milliseconds to wait for the user to enter a string. This parameter is optional. The default amount of time is infinite.

defaultbutton

The default button to select when the timeout amount has been reached. This parameter is optional. The default button selected is IDOK. Possible default button values are:

IDOK	The OK button

IDCANCEL	The Cancel button

Return Values

The InputString function returns the string entered by the user. If the Cancel button is selected, an empty string is returned.

Example

string sFileName = InputString("Enter the file name to delete.", "");

if (DeleteFile(sFileName))

	MessageBox("The file was deleted.", "Delete File", MB_OK);

else

	MessageBox("The file was not deleted.", "Delete File", MB_OK);

This example asks the user for a file name to delete, stores the file name is the sFileName variable, tries to delete the file and then displays the appropriate message.

�IsConnectedToInternet

The IsConnectedToInternet function checks to see if you are currently connected to the Internet.

int IsConnectedToInternet();

Parameters

There are no parameters.

Return Values

The IsConnectedToInternet function returns TRUE (non-zero) if you are currently connected to the Internet. The IsConnectedToInternet function returns FALSE (zero) if you are not currently connected to the Internet.

Example

if (IsConnectedToInternet())

	MessageBox("You are connected to the Internet.", "IsConnectedToInternet", MB_OK);

else

	MessageBox("You are not connected to the Internet.", "IsConnectedToInternet", MB_OK);

This example checks to see if you are currently connected to the Internet and displays the appropriate message.

See Also

BrowseURL

�IsDlgButtonChecked

The IsDlgButtonChecked function returns the state of a check box on a dialog box. You can identify the check box control by using the text or the id.

int IsDlgButtonChecked(

string text	// the text of the check box control

);

int IsDlgButtonChecked(

int id	// the id of the check box control

);

Parameters

text

The exact text of the check box control to set.

id

The id of the check box control to set.

Return Values

The IsDlgButtonChecked function returns one of the following values. If there was an error finding the control, the return value is –1.

BST_CHECKED	The check box is checked.

BST_INDETERMINATE	The check box is grayed, indicating an indeterminate state. This only applies to 3 state check boxes.

BST_UNCHECKED	The check box is unchecked.

Remarks

The IsDlgButtonChecked waits for one second for the check box to become visible.

If there is an accelerator key associated with the check box, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Enable” is displayed as “Enable” on the dialog box.

You can use the Window Information Finder command to get the edit control id or text.

This function does not work with check boxes on a web page.

Example

int state = IsDlgButtonChecked("&Password Protect");

if (state == BST_CHECKED)

	MessageBox("The Password Protect check box is checked.", "IsDlgButtonChecked", MB_OK);

else if (state == BST_UNCHECKED)

	MessageBox("The Password Protect check box is not checked.", "IsDlgButtonChecked", MB_OK);

else

	MessageBox("The Password Protect check box does not exist.", "IsDlgButtonChecked", MB_OK);

This example gets the state of the Password Protect check box and displays the appropriate message box.

�IsEmpty

The IsEmpty function checks to see if the string is empty or not.

int IsEmpty(

string text	// the text to check

);

Parameters

text

The text to check and see if it contains any characters or not.

Return Values

The IsEmpty function returns TRUE (non-zero) if the string does not contain any characters. The IsEmpty function returns FALSE (zero) if the string contains characters.

Example

if (IsEmpty(sText))

	MessageBox("The string is empty.", "IsEmpty", MB_OK);

else

	MessageBox("The string is not empty.", "IsEmpty", MB_OK);

MB_OK);

This example checks the string variable sText to see if contains any characters and displays the appropriate message box.

See Also

strlen

�IsScreenSaverRunning

The IsScreenSaverRunning function checks to see if the screen saver is currently running.

int IsScreenSaverRunning();

Parameters

There are no parameters.

Return Values

The IsScreenSaverRunning function returns TRUE (non-zero) if the screen saver is running. The IsScreenSaverRunning function returns FALSE (zero) if the screen saver is not running.

Example

while (!IsScreenSaverRunning())

	Pause(10000);

This example waits until the screen saver is active before continuing on. The Pause() is included so CLR Script does not use up a lot of processor time.

See Also

EnableScreenSaver, StopScreenSaver

�IsServiceActive

The IsServiceActive function checks the system to see if a service is active.

int IsServiceActive(

string service	// the service name to check

);

Parameters

service

The service name to check. Use the display name of the service as listed in the Services control panel.

Return Values

The IsServiceActive function returns TRUE (non-zero) if the service is active. The IsServiceActive function returns FALSE (zero) if the service is not active.

Remarks

The IsServiceActive function is only available when running under Windows NT 4.0 or later.

Example

if (IsServiceActive("Spooler"))

	MessageBox("The spooler is running.", "IsServiceActive", MB_OK);

else

	MessageBox("The spooler is not running.", "IsServiceActive", MB_OK);

This example checks to see if the spooler service is running and displays the appropriate message.

�itoa

The itoa function converts an integer value to a string.

string itoa(

int n	// the number to convert

);

Parameters

n

The number to convert.

Return Values

The itoa function returns a string representation of the integer.

Example

MessageBox(itoa(10), "The Number 10", MB_OK);

This example displays the integer 10 as a string in a message box.

�LeftString

The LeftString function returns the left part of a text string.

string LeftString(

string text,	// the text string

int n	// the number of characters

);

Parameters

text

The text string to return part of.

n

The number of characters to return.

Return Values

The LeftString function returns the left part of the string.

Remarks

If n is less than or equal to 0, an empty string is returned. If n is greater than the length of the string, the entire string is returned.

Example

string sLeft = LeftString("123456789", 5);

This example sets the variable sLeft to the first 5 characters in the string “123456789”. In this case, sLeft would equal “12345”.

See Also

MidString, RightString

�ListBox_GetCount

The ListBox_GetCount function returns the number of items in a list box. You can identify the list box control by using the text label or the id.

int ListBox_GetCount(

string label	// the text label before the list box control

);

int ListBox_GetCount(

int id	// the id of the list box control

);

Parameters

label

The static text label before or above the list box control to count.

id

The id of the list box control to count.

Return Values

The ListBox_GetCount function returns the number of items in the list box control. If there is an error finding the list box, -1 is returned.

Remarks

The ListBox_GetCount waits for one second for the static text label and the list box control to become visible.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the control id.

This function does not work with list boxes on a web page.

Example

int n = ListBox_GetCount(1000);

MessageBox("Number of items in the list:"+itoa(n), "ListBox_GetCount", MB_OK);

This example displays the number of items in the list box with id number 1000 in a message box.

See Also

ComboBox_GetCount

�ListBox_GetText

The ListBox_GetText function returns the text of an item in a list box. You can identify the list box control by using the text label or the id.

string ListBox_GetText(

string label,	// the text label before the list box control

int index	// the index of the item (optional)

);

string ListBox_GetText(

int id,	// the id of the list box control

int index	// the index of the item (optional)

);

Parameters

label

The static text label before or above the list box control.

id

The id of the list box control.

index

The zero-based index of the list box item. A value of –1 will return the currently selected text. This parameter is optional. The default value is –1.

Return Values

The ListBox_GetText function returns the text of an item in the list box control. If there is an error, an empty string is returned.

Remarks

The ListBox_GetText waits for one second for the static text label and the list box control to become visible.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the control id.

This function does not work with list boxes on a web page.

Example

string text = ListBox_GetText(1000);

MessageBox("The currently selected text is "+text, "ListBox_GetText", MB_OK);

This example displays the currently selected text in the list box with id number 1000.

See Also

ComboBox_GetText

�ListBox_SelectString

The ListBox_SelectString function selects text in a list box control. You can identify the list box control by using the text label or the id.

int ListBox_SelectString(

string label,	// the text label before the list box control

string text,	// the text to select

int option	// select options (optional)

);

int ListBox_SelectString(

int id,	// the id of the list box control

string text,	// the text to select

int option	// select options (optional)

);

Parameters

label

The static text label before or above the list box control to find which list box control to set.

id

The id of the list box control to find which list box control to set.

text

The text to select. If the text string is empty (“”), the selection(s) will be cleared.

option

The following options can be used when setting the dialog box edit control. This parameter is optional. The default is no options.

SDI_SENDCHANGE	Send a change message (LBN_SELCHANGE) to the parent window after selecting the text.

Return Values

The ListBox_SelectString function returns TRUE (non-zero) if the text is selected. The ListBox_SelectString function returns FALSE (zero) if the text is not selected.

Remarks

The ListBox_SelectString waits for one second for the static text label and the list box control to become visible and enabled.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the control id.

This function does not work with list boxes on a web page. Use the browser control function BrowserSetFormField instead.

Example

if (ListBox_SelectString("&List:", "Item 1"))

	MessageBox("Item 1 was selected.", "ListBox_SelectString", MB_OK);

else

	MessageBox("There was an error finding the list box or the string is not in the list.", "ListBox_SelectString", MB_OK);

This example selects Item 1 in the list box control and displays the appropriate message box.

See Also

ComboBox_SelectString

�MessageBox

The MessageBox function displays an information message box to the user.

int MessageBox(

string message,	// the message to display

string title,	// the title bar text of the message box (optional)

int options	// options (optional)

int milliseconds,	// the timeout value (optional)

int defaultbutton	// the default button (optional)

);

Parameters

message

The message text to display in the message box.

title

The title bar text to display on the message box. This parameter is optional. The default value is “CLR Script”.

options

The following options can be combined with the bit-wise or "|" operator: This parameter is optional. The default value is MB_OK | MB_ICONINFORMATION.

One of the following button options must be included:

MB_OK	Show an OK button.

MB_OKCANCEL	Show an OK and a Cancel button.

MB_YESNO	Show a Yes and a No button.

One of the following icon options can be included. If the icon is not included, the default CLR Script icon is displayed.

MB_ICONEXCLAMATION	Show the exclamation icon.

MB_ICONINFORMATION	Show the information icon.

MB_ICONQUESTION	Show the question mark icon.

milliseconds

The amount of time in milliseconds to wait for the user to close the message box. This parameter is optional. The default amount of time is infinite.

defaultbutton

The default button to select when the timeout amount has been reached. This parameter is optional. The default button selected is IDOK for MB_OK and MB_OKCANCEL message boxes and IDYES for MB_YESNO message boxes. Possible default button values are:

IDCANCEL	The Cancel button.

IDNO	The No button.

IDOK	The OK button.

IDYES	The Yes button.

Return Values

The MessageBox function returns 0 if there was an error displaying the dialog box. If the dialog box is displayed, one of the following constants is returned:

IDCANCEL	The Cancel button was selected.

IDNO	The No button was selected.

IDOK	The OK button was selected.

IDYES	The Yes button was selected.

Examples

MessageBox("Hello!", "Hi", MB_OK|MB_ICONINFORMATION);

This examples displays a message box with the text "Hello!", the title bar text "Hi", the button OK, and the icon "Information".

if (MessageBox("Continue?", "Continue", MB_YESNO|MB_ICONQUESTION) == IDNO)

	return;

This example returns from the function if the user selects No to continue.

�MidString

The MidString function returns the middle part of a text string.

string MidString(

string text,	// the text string

int i,	// the index to start

int n	// the number of characters (optional)

);

Parameters

text

The text string to return part of.

i

The index of the character to start. The first character’s index is 0.

n

The number of characters to return. If n is -1, the remaining characters are returned. This parameter is optional. The default value is -1 to return the remaining characters in the string.

Return Values

The MidString function returns the middle part of a string.

Remarks

If n is less than or equal to 0, an empty string is returned.

Example

string sMid = MidString("123456789", 4, 3);

This example sets the variable sMid to the middle 3 characters starting with the 5th character in the string “123456789”. In this case, sMid would equal “567”.

See Also

LeftString, RightString

�MoveFile

The MoveFile function moves or renames an existing file or folder.

int MoveFile(

string existingfilename,	// the name of the existing file or folder

string newfilename	// the name of the new file or folder

);

Parameters

existingfilename

The name of the existing file or folder.

newfilename

The name of the new file or folder.

Return Values

The MoveFile function returns TRUE (non-zero) if the file or folder was successfully moved. The MoveFile function returns FALSE (zero) if there was an error moving the file or folder.

Remarks

The new file or folder name must not already exist. To test for the existence of a file, use the FileExists function. To test for the existence of a folder, use the FolderExists function.

The new file or folder must reside on the same disk volume. For example, you cannot move a file from the C: drive to the D: drive. You can copy the file and the subsequently delete the file to move a file to another drive volume.

When specifying a full path to a file or folder, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

if (MoveFile("c:\\temp\\trash.txt", "c:\\temp\\garbage.txt"))

	MessageBox("The file trash.txt was moved to garbage.txt.", "MoveFile", MB_OK);

else

	MessageBox("There was an error moving the file trash.txt to garbage.txt.", "MoveFile", MB_OK);

This example moves the file c:\temp\trash.txt to the file c:\temp\garbage.txt and displays the appropriate message box.

See Also

CopyFile, DeleteFile, FileExists, FolderExists

�NetUserChangePassword

The NetUserChangePassword function changes the user’s password for a specified network server or domain.

int NetUserChangePassword(

string domain,	// the domain name of the server

string user,	// the user name

string oldpassword,	// the old password

string newpassword	// the new password

);

Parameters

domain

The domain name of the server. If it’s an empty string (""), the current user’s domain is used.

user

The user name. If it’s an empty string (""), the current user is used.

oldpassword

The user’s old password.

newpassword

The user’s new password.

Return Values

The NetUserChangePassword function returns TRUE (non-zero) if the password was changed. The NetUserChangePassword function returns FALSE (zero) if the password was not changed.

Remarks

The NetUserChangePassword function is only available when running under Windows NT 4.0 or later.

Example

if (NetUserChangePassword("", "", "oldone", "newone"))

	MessageBox("The password was changed.", "NetUserChangePassword", MB_OK);

else

	MessageBox("The password was not changed.", "NetUserChangePassword", MB_OK);

This example changes the users password to "newone" and displays the appropriate message box.

�OpenFile

The OpenFile function opens a file for reading or writing.

HFILE OpenFile(

string filename,	// the name of the file to open

int mode	// the file access mode (optional)

);

Parameters

filename

The name of the file to open.

mode

The file access mode. It can be one or more of the following values combined with the ‘or’ operator ‘|’. This parameter is optional. The default value is FILE_READ | FILE_SHARE_EXCLUSIVE.

FILE_CREATE	Create the file if it does not exists. If the file already exists, truncate the length to 0.

FILE_NO_TRUNCATE	Combine with FILE_CREATE. If the file already exists, do not truncate the length to 0.

FILE_READ	Open the file for reading.

FILE_WRITE	Open the file for writing.

Combine one of the following share modes. If no file sharing is combined, FILE_SHARE_EXCLUSIVE is used.

FILE_SHARE_DENY_NONE	Opens the file without denying other processes access to the file.

FILE_SHARE_DENY_READ	Opens the file denying other processes read access to the file.

FILE_SHARE_DENY_WRITE	Opens the file denying other processes write access to the file.

FILE_SHARE_EXCLUSIVE	Opens the file denying other processes read and write access to the file.

Return Values

The OpenFile function returns a handle to a file if the function was successful. The OpenFile function returns NULL if there was an error opening the file.

Remarks

This function can only open text (ASCII) files.

When using FILE_WRITE, if the file does not exist, it will not be created unless you also specify FILE_CREATE. For example: FILE_WRITE | FILE_CREATE.

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\readme.txt”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/readme.txt”.

Be sure to call the CloseFile function when you are finished using the file.

Example

HFILE fp = OpenFile("test.txt", FILE_READ|FILE_SHARE_DENY_WRITE);

if (fp == NULL)

	{

	MessageBox("There was an error opening the file test.txt.");

	return;

	}

// do something

CloseFile(fp);

This example opens the file “test.txt” and displays a message if there was an error opening the file. It then closes the file. Other processes can open the file for read access but they cannot open the file for writing.

See Also

CloseFile

�Pause

The Pause function pauses the script for the designated amount of time.

void Pause(

int milliseconds	// the amount of time to pause, in milliseconds

);

Parameters

milliseconds

The amount of time, in milliseconds, to pause the script.

Return Values

The Pause function does not return a value.

Remarks

There are 1000 milliseconds per second.

Example

Pause(2000);

This example pauses the script file 2 seconds.

�rand

The rand function returns a pseudorandom number between 0 and RAND_MAX.

int rand();

Parameters

There are no parameters.

Return Values

The rand function returns a pseudorandom number between 0 and RAND_MAX.

Remarks

RAND_MAX equals 32,767.

Example

MessageBox(itoa(rand()), "rand", MB_OK);

This example displays a random number.

�ReadFileString

The ReadFileString function reads a line of text from a file.

string ReadFileString(

HFILE file	// the file to read from

);

Parameters

file

The handle to the file to read from.

Return Values

The ReadFileString function returns the next line of text from a file. The terminating new line character ‘\n’ is not returned. If there was an error reading from the file, an empty string is returned.

Remarks

Use the FileEOF function to test if the file pointer is currently at the end of the file.

Example

HFILE fp = OpenFile("test.txt", FILE_READ);

if (fp == NULL)

	{

	MessageBox("There was an error opening the file test.txt.");

	return;

	}

string sText;

while (!FileEOF(fp))

	sText = sText + ReadFileString(fp) + "\n";

CloseFile(fp);

This example reads in an entire text file into the string sText.

See Also

OpenFile, FileEOF

�RegCreateKey

The RegCreateKey function creates a new key in the system registry.

int RegCreateKey(

HKEY key,	// the registry key

string subkey	// the registry subkey to create

);

Parameters

key

The registry key. It can be one of the following keys:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA	Windows NT only

HKEY_DYN_DATA	Windows 95 and 98 only

subkey

The registry subkey to create.

Return Values

The RegCreateKey function returns TRUE (non-zero) if the registry key was created. The RegCreateKey function returns FALSE (zero) if the registry key was not created.

Remarks

Manipulating the system registry is very dangerous and can render your computer inoperable. Use all the registry functions with extreme caution.

When specifying the subkey, be sure to use double back-slashes “\\” between subkeys because the back-slash is used for special string characters.

Example

if (RegCreateKey(HKEY_CURRENT_USER, "Software\\CLR\\CLR Script\\Test"))

	MessageBox("The registry key was created.", "RegCreateKey", MB_OK);

else

	MessageBox("The registry key was not created.", "RegCreateKey", MB_OK);

This example creates the registry key HKEY_CURRENT_USER\Software\CLR\CLR Script\Test and displays the appropriate message box.

See Also

RegDeleteKey, RegDeleteKeyValue, RegGetKeyValueInt, RegGetKeyValueString, RegSetKeyValueInt, RegSetKeyValueString

�RegDeleteKey

The RegDeleteKey function deletes a key from the system registry.

int RegDeleteKey(

HKEY key,	// the registry key

string subkey,	// the registry sub key to delete

int deletesubkeys	// delete all the sub key descendants (optional)

);

Parameters

key

The registry key. It can be one of the following keys:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA	Windows NT only

HKEY_DYN_DATA	Windows 95 and 98 only

subkey

The registry sub key to delete.

deletesubkey

Option to delete all of the sub key descendants. If TRUE (non-zero), all of the sub key descendants will be deleted. This parameter is optional. The default is TRUE (non-zero).

Return Values

The RegDeleteKey function returns TRUE (non-zero) if the registry sub key was deleted. The RegDeleteKey function returns FALSE (zero) if the registry sub key was not deleted.

Remarks

Manipulating the system registry is very dangerous and can render your computer inoperable. Use all the registry functions with extreme caution.

If you specify to not delete all of the descendants and there are descendants, the function will return FALSE (zero).

When specifying the sub key, be sure to use double back-slashes “\\” between sub keys because the back-slash is used for special string characters.

Example

if (RegDeleteKey(HKEY_CURRENT_USER, "Software\\CLR\\CLR Script\\Test"))

	MessageBox("The registry key was deleted.", "RegDeleteKey", MB_OK);

else

	MessageBox("The registry key was not deleted.", "RegDeleteKey", MB_OK);

This example deletes the registry key HKEY_CURRENT_USER\Software\CLR\CLR Script\Test and displays the appropriate message box.

See Also

RegCreateKey, RegDeleteKeyValue, RegGetKeyValueInt, RegGetKeyValueString, RegSetKeyValueInt, RegSetKeyValueString

�RegDeleteKeyValue

The RegDeleteKeyValue function deletes a value from the system registry.

int RegDeleteKeyValue(

HKEY key,	// the registry key

string subkey,	// the registry subkey

string name	// the value name to delete

);

Parameters

key

The registry key. It can be one of the following keys:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA	Windows NT only

HKEY_DYN_DATA	Windows 95 and 98 only

subkey

The registry sub key.

name

The value name to delete.

Return Values

The RegDeleteKeyValue function returns TRUE (non-zero) if the registry value was deleted. The RegDeleteKeyValue function returns FALSE (zero) if the registry value was not deleted.

Remarks

Manipulating the system registry is very dangerous and can render your computer inoperable. Use all the registry functions with extreme caution.

When specifying the sub key, be sure to use double back-slashes “\\” between sub keys because the back-slash is used for special string characters.

Example

if (RegDeleteKeyValue(HKEY_CURRENT_USER, "Software\\CLR\\CLR Script\\Settings", "Test"))

	MessageBox("The registry value was deleted.", "RegDeleteKeyValue", MB_OK);

else

	MessageBox("The registry value was not deleted.", "RegDeleteKeyValue", MB_OK);

This example deletes the registry value HKEY_CURRENT_USER\Software\CLR\CLR Script\Settings\Test and displays the appropriate message box.

See Also

RegCreateKey, RegDeleteKey, RegGetKeyValueInt, RegGetKeyValueString, RegSetKeyValueInt, RegSetKeyValueString

�RegGetKeyValueInt

The RegGetKeyValueInt function gets an integer value from the system registry.

int RegGetKeyValueInt(

HKEY key,	// the registry key

string subkey,	// the registry subkey

string name,	// the value name

int defaultvalue	// the default value (optional)

);

Parameters

key

The registry key. It can be one of the following keys:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA	Windows NT only

HKEY_DYN_DATA	Windows 95 and 98 only

subkey

The registry subkey.

name

The value name to set.

defaultvalue

The default value. This parameter is optional. The default value is 0.

Return Values

The RegGetKeyValueInt function returns the value stored in the registry. If the value does not exist, the default value is returned.

Remarks

Manipulating the system registry is very dangerous and can render your computer inoperable. Use all the registry functions with extreme caution.

When specifying the subkey, be sure to use double back-slashes “\\” between subkeys because the back-slash is used for special string characters.

Example

MessageBox("The value of test is: "+itoa(RegGetKeyValueInt(HKEY_CURRENT_USER, "Software\\CLR\\CLR Script\\Variables", "Test", 123)), "Test", MB_OK);

This example displays the registry value HKEY_CURRENT_USER\Software\CLR\CLR Script\Variables\Test in a message box.

See Also

RegCreateKey, RegDeleteKey, RegDeleteKeyValue, RegGetKeyValueString, RegSetKeyValueInt, RegSetKeyValueString

�RegGetKeyValueString

The RegGetKeyValueString function gets a string value from the system registry.

string RegSetKeyValueString(

HKEY key,	// the registry key

string subkey,	// the registry subkey

string name,	// the value name

string defaultvalue	// the default value (optional)

);

Parameters

key

The registry key. It can be one of the following keys:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA	Windows NT only

HKEY_DYN_DATA	Windows 95 and 98 only

subkey

The registry subkey.

name

The value name to set.

defaultvalue

The default value. This parameter is optional. The default value is an empty string “”.

Return Values

The RegGetKeyValueString function returns the value stored in the registry. If the value does not exist, the default value is returned.

Remarks

Manipulating the system registry is very dangerous and can render your computer inoperable. Use all the registry functions with extreme caution.

When specifying the subkey, be sure to use double back-slashes “\\” between subkeys because the back-slash is used for special string characters.

Example

MessageBox("The value of TestString is: "+RegGetKeyValueString(HKEY_CURRENT_USER, "Software\\CLR\\CLR Script\\Variables", "TestString", ""), "Test", MB_OK);

This example displays the registry value HKEY_CURRENT_USER\Software\CLR\CLR Script\Variables\TestString in a message box.

See Also

RegCreateKey, RegDeleteKey, RegDeleteKeyValue, RegGetKeyValueInt, RegSetKeyValueInt, RegSetKeyValueString

�RegSetKeyValueInt

The RegSetKeyValueInt function sets an integer value in the system registry.

int RegSetKeyValueInt(

HKEY key,	// the registry key

string subkey,	// the registry subkey

string name,	// the value name

int value	// the value

);

Parameters

key

The registry key. It can be one of the following keys:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA	Windows NT only

HKEY_DYN_DATA	Windows 95 and 98 only

subkey

The registry subkey.

name

The value name to set.

value

The value.

Return Values

The RegSetKeyValueInt function returns TRUE (non-zero) if the registry value is set. The RegSetKeyValueInt function returns FALSE (zero) if the registry value is not set.

Remarks

Manipulating the system registry is very dangerous and can render your computer inoperable. Use all the registry functions with extreme caution.

When specifying the subkey, be sure to use double back-slashes “\\” between subkeys because the back-slash is used for special string characters.

Example

if (RegSetKeyValueInt(HKEY_CURRENT_USER, "Software\\CLR\\CLR Script\\Settings", "Test", 123))

	MessageBox("The registry value was set.", "RegSetKeyValueInt", MB_OK);

else

	MessageBox("The registry value was not set.", "RegSetKeyValueInt", MB_OK);

This example sets the registry value HKEY_CURRENT_USER\Software\CLR\CLR Script\Settings\Test to 123 and displays the appropriate message box.

See Also

RegCreateKey, RegDeleteKey, RegDeleteKeyValue, RegGetKeyValueInt, RegGetKeyValueString, RegSetKeyValueString

�RegSetKeyValueString

The RegSetKeyValueString function sets a string value in the system registry.

int RegSetKeyValueString(

HKEY key,	// the registry key

string subkey,	// the registry subkey

string name,	// the value name

string value	// the value

);

Parameters

key

The registry key. It can be one of the following keys:

HKEY_CLASSES_ROOT

HKEY_CURRENT_CONFIG

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_PERFORMANCE_DATA	Windows NT only

HKEY_DYN_DATA	Windows 95 and 98 only

subkey

The registry subkey.

name

The value name to set.

value

The value.

Return Values

The RegSetKeyValueString function returns TRUE (non-zero) if the registry value is set. The RegSetKeyValueString function returns FALSE (zero) if the registry value is not set.

Remarks

Manipulating the system registry is very dangerous and can render your computer inoperable. Use all the registry functions with extreme caution.

When specifying the subkey, be sure to use double back-slashes “\\” between subkeys because the back-slash is used for special string characters.

Example

if (RegSetKeyValueString(HKEY_CURRENT_USER, "Software\\CLR\\CLR Script\\Settings", "Test", "Test Value"))

	MessageBox("The registry value was set.", "RegSetKeyValueString", MB_OK);

else

	MessageBox("The registry value was not set.", "RegSetKeyValueString", MB_OK);

This example sets the registry value HKEY_CURRENT_USER\Software\CLR\CLR Script\Settings\Test to "Test Value" and displays the appropriate message box.

See Also

RegCreateKey, RegDeleteKey, RegDeleteKeyValue, RegGetKeyValueInt, RegGetKeyValueString, RegSetKeyValueInt

�ReplaceString

The ReplaceString function replaces instances of a sub-string with another string within a string.

int ReplaceString(

string s,	// the string to search

string findstring,	// the sub-string to find

string replacestring,	// the string to replace

int all,	// replace all occurrences (optional)

int start	// the character index to start at (optional)

);

Parameters

s

The string to search.

findstring

The sub-string to find.

replacestring

The string to replace.

all

If TRUE, replace all occurrences of sub-string. If FALSE, only replace the first occurrence of sub-string. This parameter is optional. The default is FALSE, to only replace the first occurrence.

start

The character index to start at. This parameter is optional. The default is 0, to start at the beginning of the string.

Return Values

The FindString function returns the resulting string after the string(s) are replaced. If the sub-string is not found, the original string is returned.

Remarks

The index of the first character is 0.

Example

string s = ReplaceString("abcde", "bc", "123");

MessageBox(s, "ReplaceString", MB_OK);

This example displays the string “a123de”.

string s = ReplaceString("abcabcabc", "b", "-", TRUE);

MessageBox(s, "ReplaceString", MB_OK);

This example displays the string “a-ca-ca-c”.

string s = ReplaceString("abcabcabc", "b", "-", TRUE, 3);

MessageBox(s, "ReplaceString", MB_OK);

This example displays the string “abca-ca-c”.

�RightString

The RightString function returns the right part of a text string.

string RightString(

string text,	// the text string

int n	// the number of characters

);

Parameters

text

The text string to return part of.

n

The number of characters to return.

Return Values

The RightString function returns the right part of the string.

Remarks

If n is less than or equal to 0, an empty string is returned. If n is greater than the length of the string, the entire string is returned.

Example

string sRight = RightString("123456789", 5);

This example sets the variable sRight to the last 5 characters in the string “123456789”. In this case, sRight would equal “56789”.

See Also

LeftString, MidString

�Run

The Run function runs a program or shortcut.

int Run(

string commandline,	// the command line to run

int show	// specifies how the window is to be shown (optional)

);

Parameters

commandline

The command line to run.

show

Specifies how the window is to be shown. This parameter is optional. The default value is SW_SHOWNORMAL.

SW_SHOWMINIMIZED	Activate and show the window minimized.

SW_SHOWMINNOACTIVE	Show the window minimized. The window that was active remains active.

SW_SHOWMAXIMIZED	Activate and show the window maximized.

SW_SHOWNORMAL	Activate and show the window in its normal state.

Return Values

The Run function returns TRUE (non-zero) if the program or shortcut was run. The Run function returns FALSE (zero) if there was an error running the program or shortcut.

Remarks

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

To pause the script to wait for the program window to become visible, use the WaitWindowTitleVisible() function.

To pause the script until the program is closed, use the RunWait() function.

Example

if (Run("notepad", SW_SHOWNORMAL))

	MessageBox("Notepad was started.", "Run", MB_OK);

else

	MessageBox("There was an error starting Notepad.", "Run", MB_OK);

This example runs the program Notepad as a normal window and displays the appropriate message box if the program was started.

See Also

RunWait, WaitWindowTitleVisible

�RunWait

The RunWait function runs a program and waits until the program terminates before continuing.

int RunWait(

string commandline,	// the command line to run

int show,	// specifies how the window is to be shown (optional)

int milliseconds	// amount of time to wait for the program to terminate (optional)

);

Parameters

commandline

The command line to run.

show

Specifies how the window is to be shown. This parameter is optional. The default value is SW_SHOWNORMAL.

SW_SHOWMINIMIZED	Activate and show the window minimized.

SW_SHOWMINNOACTIVE	Show the window minimized. The window that was active remains active.

SW_SHOWMAXIMIZED	Activate and show the window maximized.

SW_SHOWNORMAL	Activate and show the window in it’s normal state.

milliseconds

The amount of time in milliseconds to wait for the program to terminate. This parameter is optional. The default value is 24 hours (86400000 milliseconds).

Return Values

The RunWait function returns 1 if the program was run. The RunWait function returns 0 if there was an error running the program. The RunWait function returns -1 if the amount of time to wait for the program to terminate expires.

Remarks

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

There are 1000 milliseconds per second.

Example

if (RunWait("notepad", SW_SHOWNORMAL, 60*60*1000) != 1)

	{

	MessageBox("There was an error starting Notepad or the program never terminated.", "RunWait", MB_OK);

	return;

	}

MessageBox("Notepad was started and then terminated.", "RunWait", MB_OK);

This example runs the program Notepad as a normal window and waits 1 hour for the program to exit before continuing.

See Also

Run

�SendKeys

The SendKeys function simulates pressing keys on the keyboard.

void SendKeys(

string keys	// the keys to press

);

Parameters

keys

The keys to simulate pressing on the keyboard. See the Remarks section for the codes to send special keys.

Return Values

The SendKeys function does not return a value.

Remarks

Special keyboard keys are pressed by using special codes.

{alt}	The next key pressed also has the alt key down at the same time.

{ctrl}	The next key pressed also has the control [ctrl] key down at the same time.

{shift}	The next key pressed also has the shift key down at the same time.

{altkey}	The alt key is pressed and released. Also called the menu key.

{laltkey}	The left alt key is pressed and released. Also called the left menu key.

{raltkey}	The right alt key is pressed and released. Also called the right menu key.

{ctrlkey}	The control [ctrl] key is pressed and released.

{lctrlkey}	The left control [ctrl] key is pressed and released.

{rctrlkey}	The right control [ctrl] key is pressed and released.

{shiftkey}	The shift key is pressed and released.

{lshiftkey}	The left shift key is pressed and released.

{rshiftkey}	The right shift key is pressed and released.

{enter}	The enter key.

{space}	The space bar key. You can also use the space character.

{tab}	The tab key.

{backspace}	The backspace key.

{up}	The up arrow key.

{down}	The down arrow key.

{left}	The left arrow key.

{right}	The right arrow key.

{pagedown}	The page down key.

{pageup}	The page up key.

{home}	The home key.

{end}	The end key.

{insert}	The insert key.

{delete}	The delete key.

{escape}	The escape [esc] key.

{pausekey}	The pause key.

{capslock}	The caps lock key.

{numlock}	The num lock key. Windows NT and 2000 only.

{scrolllock}	The scroll lock key.

{printscreen}	The print screen key.

{help}	The help key.

{appskey}	The applications key (natural keyboard).

{lwinkey}	The left Windows key (natural keyboard).

{rwinkey}	The right Windows key (natural keyboard).

{fn}	The function key n. n can be a function key number from 1 to 24. For example: {f1}

{numpadn}	The number pad key n. n can be from 0 to 9. For example: {numpad1}

{add}	The add key.

{subtract}	The subtract key.

{multiply}	The multiply key.

{divide}	The divide key.

You can also repeat the special codes by adding a number inside the curly braces "{}". For example: {down 5} will repeat pressing the down key 5 times in a row.

It is a good practice to always verify that the correct window is active to accept the keyboard input you are sending. Use the built-in functions VerifyActiveMDIWindowTitle, VerifyActiveWindowTitle, VerifyActiveWindowTitleSub, and VerifyActiveWindowText to verify that the correct window is active.

Example

SendKeys("{alt}fx");

This example presses the keys [alt]+f and x to exit a program.

See Also

VerifyActiveMDIWindowTitle, VerifyActiveWindowTitle, VerifyActiveWindowTitleSub, VerifyActiveWindowText

�SendMailMapi

The SendMailMapi function sends email using the Microsoft Windows Messaging System (MWS).

int SendMailMapi(

string to,	// the primary recipient’s email address or name

string cc,	// the carbon-copy recipient’s email address or name

string bcc,	// the blind carbon-copy recipient’s email address or name

string subject,	// the subject of the message

string message,	// the message text

string attachments,	// the file attachments to include (optional)

int options	// send options (optional)

);

Parameters

to

The primary recipient’s email address or name. The string can be a name in your address book or a fully qualified email address (name@domain.com). Multiple email addresses can be separated by a semi-colon “;”.

cc

The carbon-copy recipient’s email address or name. The string can be a name in your address book or a fully qualified email address (name@domain.com). Multiple email addresses can be separated by a semi-colon “;”.

bcc

The blind carbon-copy recipient’s email address or name. The string can be a name in your address book or a fully qualified email address (name@domain.com). The blind carbon-copy email address is hidden from all recipients. Multiple email addresses can be separated by a semi-colon “;”.

subject

The subject of the message.

message

The message text of the message.

attachments

The path name of the file attachments to include. Multiple files can be attached by separating the file names with a new-line character “\n”. This parameter is optional.

options

The following options are available. Possible values are one or more of the following combined with the ‘or’ operator ‘|’. This parameter is optional. The default is none.

SENDMAIL_DIALOG	Display a message dialog box to alter the contents or options of the message.

Return Values

The SendMailMapi function returns one of the following values:

Value	Description

0	Success

1	User abort

2	Failure

3	Logon failure

4	Disk full

5	Insufficient memory

6	Access denied

8	Too many sessions

9	Too many files

10	Too many recipients

11	Attachment not found

12	Attachment open failure

13	Attachment write failure

14	Unknown recipient

15	Bad recipient type

16	No messages

17	Invalid message

18	Text too large

19	Invalid session

20	Type not supported

21	Ambiguous recipient

22	Message in use

23	Network failure

24	Invalid edit fields

25	Invalid recipients

26	Not supported

Remarks

It is recommended to send a test message to yourself to verify that the Windows Messaging System is correctly installed on your computer.

When specifying the path to the file attachments, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int iret = SendMailMapi("testsendmail@clrsoftware.com", "", "", "Test SendMailMapi", "This is a test message sent from CLR Script.");

if (iret == 0)

	MessageBox("The message was sent.");

else

	MessageBox("There was an error sending the test message. Error "+itoa(iret));

This example sends a test message and displays the result of the function.

�SetDefaultPrinter

The SetDefaultPrinter function sets the default system printer.

int SetDefaultPrinter(

string name	// the name of the printer

);

Parameters

name

The friendly name of the printer to make the default. Use the name as listed in the Printers window.

Return Values

The SetDefaultPrinter function returns TRUE (non-zero) if the printer was set as the default. The SetDefaultPrinter function returns FALSE (zero) if the printer could not be set as the default.

Example

if (SetDefaultPrinter("HP LaserJet 4L"))

	MessageBox("The default printer is now the HP LaserJet.", "SetDefaultPrinter", MB_OK);

else

	MessageBox("The default printer was not set.", "SetDefaultPrinter", MB_OK);

This example sets the default printer to the HP LaserJet 4L and displays the appropriate message.

�SetDlgItemText

The SetDlgItemText function sets the text in an edit control. You can identify the edit control by using the text label or the id.

int SetDlgItemText(

string label,	// the text label for the edit control

string text,	// the text to set

int option	// set options (optional)

);

int SetDlgItemText(

int id,	// the id of the edit control

string text,	// the text to set

int option	// set options (optional)

);

Parameters

label

The static text label before or above the edit control to find which edit control to set.

id

The id of the edit control to find which edit control to set.

text

The text to set.

option

The following options can be used when setting the dialog box edit control. This parameter is optional. The default is no options.

SDI_SENDCHANGE	Send a change message (EN_CHANGE) to the parent window after setting the text.

Return Values

The SetDlgItemText function returns TRUE (non-zero) if the text is set. The SetDlgItemText function returns FALSE (zero) if the text is not set.

Remarks

The SetDlgItemText waits for one second for the static text label and the edit control to become visible and enabled.

If there is an accelerator key associated with the static text label, place an ampersand "&" before the character that is underlined as the accelerator key. For example: “&Name:” is displayed as “Name:” on the dialog box.

You can use the Window Information Finder command to get the edit control id.

If other controls are updated when the text changes, use the SDI_SENDCHANGE option to notify the dialog box that the text has changed.

This function does not work with edit boxes on a web page. Use the browser control function BrowserSetFormField instead.

Example

if (SetDlgItemText("&Name:", "My Name"))

	MessageBox("The name was entered.", "SetDlgItemText", MB_OK);

else

	MessageBox("There was an error finding the Name edit box.", "SetDlgItemText", MB_OK);

This example sets the Name edit control and displays the appropriate message box.

�SetFileAttributes

The SetFileAttributes function sets the attributes of a file or directory.

int SetFileAttributes(

string filename,	// the name of the file or directory

int attributes	// the attributes to set

);

Parameters

filename

The name of the file or directory to set the attributes.

attributes

The attributes to set. Possible values are one or more of the following combined with the ‘or’ operator ‘|’.

FILE_ATTRIBUTE_ARCHIVE	The file or directory is an archive.

FILE_ATTRIBUTE_HIDDEN	The file or directory is hidden.

FILE_ATTRIBUTE_NORMAL	The file or directory has no other attributes set. This attribute is valid only if used alone.

FILE_ATTRIBUTE_READONLY	The file or directory is read-only.

FILE_ATTRIBUTE_SYSTEM	The file or directory is a system file or directory.

Return Values

The SetFileAttributes function returns TRUE (non-zero) if the function was successful. The SetFileAttributes function returns FALSE (zero) if there was an error setting the attributes.

Remarks

It is recommended to get the attributes of the file before setting the attributes so possible attributes are not lost.

When specifying a full path to a file, use one of two methods for the back-slash ‘\’ character:

	1.	Use two consecutive back-slashes ‘\\’ because the back-slash is used for special string characters. For example: “c:\\windows\\notepad”.

	2.	Use the forward-slash ‘/’. For example: “c:/windows/notepad”.

Example

int attributes = GetFileAttributes("filename.txt");

if (attributes == -1)

	{

	MessageBox("There was an error getting the attributes of the file.");

	return;

	}

attributes = attributes | FILE_ATTRIBUTE_READONLY;

if (!SetFileAttributes("filename.txt", attributes))

	{

	MessageBox("There was an error setting the read-only attribute.");

	return;

	}

This example first gets the current attributes of the file “filename.txt” and then sets the read-only attribute. If there was an error, it displays an error message and returns.

See Also

GetFileAttributes

�SetForegroundWindow

The SetForegroundWindow function sees if a window is open that matches the class name and/or window title then brings that window to the foreground.

int SetForegroundWindow(

string classname,	// the class name of the window to bring to the foreground

string title	// the title bar text of the window to bring to the foreground

);

Parameters

classname

The class name of the window to bring to the foreground.

title

The title bar text of the window to bring to the foreground.

Return Values

The SetForegroundWindow function returns TRUE (non-zero) if a window is found that has the class name and/or window title bar text and the window is brought to the foreground. The SetForegroundWindow function returns FALSE (zero) if no matching window is found.

Remarks

If both a class name and a window title are used, both must match. Otherwise, only one of the two parameters needs to match. Enter an empty string "" to match any window.

Example

if (SetForegroundWindow("MSMoney Frame", ""))

	MessageBox("Microsoft Money is running and is now the foreground window.", "SetForegroundWindow", MB_OK);

else

	MessageBox("Microsoft Money is not running.", "SetForegroundWindow", MB_OK);

This example brings Microsoft Money to the foreground by finding its class name and displays the appropriate message box.

See Also

FindWindow, SetForegroundWindowTitleSub

�SetForegroundWindowTitleSub

The SetForegroundWindowTitleSub function sees if a window is open that contains the window title text then brings that window to the foreground.

int SetForegroundWindowTitleSub(

string title	// a part of the title bar text of the window to bring to the foreground

);

Parameters

title

A part of the title bar text of the window to bring to the foreground.

Return Values

The SetForegroundWindowTitleSub function returns TRUE (non-zero) if a window is found that contains the window title bar text and the window is brought to the foreground. The SetForegroundWindowTitleSub function returns FALSE (zero) if no matching window is found.

Example

if (SetForegroundWindowTitleSub("- Notepad"))

	MessageBox("Notepad is running and is now the foreground window.", "SetForegroundWindowTitleSub", MB_OK);

else

	MessageBox("Notepad is not running.", "SetForegroundWindowTitleSub", MB_OK);

This example brings Notepad to the foreground by finding a portion of the window title bar text and displays the appropriate message box.

See Also

FindWindow, SetForegroundWindow

�SetRunningScriptWindow

The SetRunningScriptWindow function adjusts the properties of the Running Script Window.

void SetRunningScriptWindow(

int options,	// the options to set

string title,	// the title of the Running Script window (optional)

int x,	// x coordinate of the window (optional)

int y	// y coordinate of the window (optional)

);

Parameters

options

The options to set. It can be one or more of the following options combined with the ‘or’ operator ‘|’. If an option is not provided, it is not changed.

RSW_ALWAYS_ON_TOP	Set the window to always on top.

RSW_NOT_ALWAYS_ON_TOP	Set the window to not always be on top.

RSW_SHOW	Show the window.

RSW_HIDE	Hide the window.

RSW_MOVE_CENTER	Center the window on the screen.

RSW_MOVE_UPPER_LEFT	Move the window to the upper left corner of the screen.

RSW_MOVE_UPPER_RIGHT	Move the window to the upper right corner of the screen.

RSW_MOVE_LOWER_LEFT	Move the window to the lower left corner of the screen.

RSW_MOVE_LOWER_RIGHT	Move the window to the lower right corner of the screen.

RSW_MOVE_COORDINATES	Use the x and y coordinates to locate the window on the screen.

title

The title of the window. This parameter is optional. If it is omitted or empty, the title bar is not changed.

x

The x coordinate to locate the left edge of the window on the screen. The option RSW_MOVE_COORDINATES must also be set. Otherwise, the value is ignored.

y

The y coordinate to locate the top edge of the window on the screen. The option RSW_MOVE_COORDINATES must also be set. Otherwise, the value is ignored.

Return Values

The SetRunningScriptWindow function does not return a value.

Example

SetRunningScriptWindow(RSW_MOVE_CENTER, "Hi There");

This example moves the Running Script window to the center of the screen and changes the title bar to “Hi There”.

�SetSystemTime

The SetSystemTime function sets the computer’s date and time.

int SetSystemTime(

int year,	// the year to set

int month,	// the month to set (optional)

int day,	// the day to set (optional)

int hour,	// the hour to set (optional)

int minute,	// the minute to set (optional)

int second	// the second to set (optional)

);

Parameters

year

The year to set.

month

The month to set. This parameter is optional. The default value is the current month.

day

The day to set. This parameter is optional. The default value is the current day.

hour

The hour to set. This parameter is optional. The default value is the current hour.

minute

The minute to set. This parameter is optional. The default value is the current minute.

second

The second to set. This parameter is optional. The default value is the current second.

Return Values

The SetSystemTime function returns TRUE (non-zero) if successful and returns FALSE (zero) if there was an error.

Remarks

If you set any of the parameters to –1, the current value will be used.

Example

if (SetSystemTime(2001, 1, 1, -1, -1, -1))

	MessageBox(CurrentTimeString("%x %X"));

else

	MessageBox("There was an error setting the system time.");

This example sets the current date to be January 1, 2001 and the time to not change. If successful, it displays the current date and time. Otherwise, it displays an error message.

�SetWaitIncrement

The SetWaitIncrement function sets the time slice CLR Script will relinquish the processor while waiting for an event to occur. This increment is used for the Pause function, all Wait and Verify functions and all functions that have a timeout value.

void SetWaitIncrement(

int milliseconds	// the time slice to relinquish (optional)

);

Parameters

milliseconds

The time slice in milliseconds to relinquish while waiting for an event to occur. The value can range from 0 to 100 milliseconds. This parameter is optional. The default value is 1 millisecond.

Return Values

There is no return value.

Remarks

The wait increment typically does not need to be changed. Depending upon what programs are running and the computer configuration, this value may need to be adjusted to allow for more processor time for other programs.

1 millisecond is 1/1000th of a second.

Example

SetWaitIncrement(100);

Pause(60000);

This example sets the wait increment to 100 milliseconds then pauses for 60 seconds.

�StopScreenSaver

The StopScreenSaver function stops a screen saver if it is running.

void StopScreenSaver();

Parameters

There are no parameters.

Return Value

There is no return value.

Remarks

If the screen saver is password protected, you can send the password with a script in Windows 95/98 (see the example below). For security reasons in Windows NT, you cannot send the password because the computer is locked and must be unlocked by pressing CTRL+ALT+DEL.

Example

if (IsScreenSaverRunning())

	{

	StopScreenSaver();

	// sending the password only works under windows 95/98

	if (VerifyActiveWindowTitle("Windows Screen Saver"))

		{

		SendKeys("password");

		ClickButton("OK");

		}

	}

This example stops the screen saver if it is running then enters the password.

See Also

EnableScreenSaver, IsScreenSaverRunning

�strlen

The strlen function returns the number of characters in the string.

int strlen(

string text	// return the length of the string

);

Parameters

text

Return the length of the text string.

Return Values

The strlen function returns the number of characters in the string.

Example

int len = strlen("Hi!");

This example sets the variable len to the number of characters in the string “Hi!”. In this case, len would equal 3.

See Also

IsEmpty

�strlwr

The strlwr function converts a string to lowercase characters.

string strlwr(

string text	// return the string as lowercase

);

Parameters

text

Return the string as lowercase.

Return Values

The strlwr function returns the the string as lowercase characters.

Example

string s = strlwr("Hi There!");

This example sets the variable s to the lowercase string “hi there!”.

See Also

strupr

�strupr

The strupr function converts a string to uppercase characters.

string strupr(

string text	// return the string as uppercase

);

Parameters

text

Return the string as uppercase.

Return Values

The strupr function returns the the string as uppercase characters.

Example

string s = strupr("Hi There!");

This example sets the variable s to the uppercase string “HI THERE!”.

See Also

strlwr

�VerifyActiveMDIWindowTitle

The VerifyActiveMDIWindowTitle function verifies the active MDI (multiple document interface) window title text exactly to make sure the script is running as planned.

int VerifyActiveMDIWindowTitle(

string title,	// the MDI title bar text to verify

int milliseconds	// the timeout value (optional)

);

Parameters

title

The MDI title bar text to verify.

milliseconds

The amount of time in milliseconds to wait for the active MDI window title to be correct. This parameter is optional. The default value is 1000 milliseconds (1 second).

Return Values

The VerifyActiveMDIWindowTitle function returns TRUE (non-zero) if the active MDI window exactly matches the title bar text. The VerifyActiveMDIWindowTitle function returns FALSE (zero) if the active MDI window does not exactly match the title bar text.

Example

if (VerifyActiveMDIWindowTitle("Document2"))

	MessageBox("Document2 is the active MDI window title in Microsoft Word.", "Verify", MB_OK);

else

	MessageBox("Document2 is not the active MDI window title in Microsoft Word.", "Verify", MB_OK);

This example verifies the active MDI window title in Microsoft Word to see if it is "Document2" and displays the appropriate message box.

See Also

VerifyActiveWindowTitle, VerifyActiveWindowTitleSub, VerifyActiveWindowText

�VerifyActiveWindowTitle

The VerifyActiveWindowTitle function verifies the active window title text exactly to make sure the script is running as planned.

int VerifyActiveWindowTitle(

string title,	// the title bar text to verify

int milliseconds	// the timeout value (optional)

);

Parameters

title

The title bar text to verify.

milliseconds

The amount of time in milliseconds to wait for the active window title to be correct. This parameter is optional. The default value is 1000 milliseconds (1 second).

Return Values

The VerifyActiveWindowTitle function returns TRUE (non-zero) if the active window exactly matches the title bar text. The VerifyActiveWindowTitle function returns FALSE (zero) if the active window does not exactly match the title bar text.

Example

if (VerifyActiveWindowTitle("Untitled - Notepad"))

	MessageBox("Notepad is the active window title.", "Verify", MB_OK);

else

	MessageBox("Notepad is not the active window title.", "Verify", MB_OK);

This example verifies the active window title to see if it is "Untitled - Notepad" and displays the appropriate message box.

See Also

VerifyActiveMDIWindowTitle, VerifyActiveWindowTitleSub, VerifyActiveWindowText

�VerifyActiveWindowTitleSub

The VerifyActiveWindowTitleSub function verifies any part of the active window title text to make sure the script is running as planned.

int VerifyActiveWindowTitleSub(

string title,	// the title bar text to verify

int milliseconds	// the timeout value (optional)

);

Parameters

title

The title bar text to verify.

milliseconds

The amount of time in milliseconds to wait for the active window title to be correct. This parameter is optional. The default value is 1000 milliseconds (1 second).

Return Values

The VerifyActiveWindowTitleSub function returns TRUE (non-zero) if the active window contains the title bar text. The VerifyActiveWindowTitleSub function returns FALSE (zero) if the active window does not contain the title bar text.

Example

if (VerifyActiveWindowTitleSub("- Notepad"))

	MessageBox("Notepad is the active program.", "Verify", MB_OK);

else

	MessageBox("Notepad is not the active program.", "Verify", MB_OK);

This example verifies the active window title to see if it contains "- Notepad" and displays the appropriate message box.

See Also

VerifyActiveMDIWindowTitle, VerifyActiveWindowTitle, VerifyActiveWindowText

�VerifyActiveWindowText

The VerifyActiveWindowText function verifies the text on the active window to make sure the script is running as planned.

int VerifyActiveWindowText(

string text,	// the text to verify

int milliseconds	// the timeout value (optional)

);

Parameters

text

The text to verify.

milliseconds

The amount of time in milliseconds to wait for the active window text to be correct. This parameter is optional. The default value is 1000 milliseconds (1 second).

Return Values

The VerifyActiveWindowText function returns TRUE (non-zero) if the active window contains the text on the window. The VerifyActiveWindowText function returns FALSE (zero) if the active window does not contain the text on the window.

Remarks

The VerifyActiveWindowText can only read static text on a window. It cannot read test within an edit control.

This function is useful to verify text on a pop-up dialog box.

Example

if (VerifyActiveWindowText("Incorrect password"))

	MessageBox("An incorrect password was entered.", "Verify", MB_OK);

else

	MessageBox("The correct password was entered.", "Verify", MB_OK);

This example verifies the active window text to see if it contains "Incorrect password" and displays the appropriate message box.

See Also

VerifyActiveMDIWindowTitle, VerifyActiveWindowTitle, VerifyActiveWindowTitleSub

�WaitWindowClosed

The WaitWindowClosed function waits until the windows with the class name and/or title bar text is closed.

int WaitWindowClosed(

string classname,	// the class name of the window

string title,	// the title bar text of the window

int milliseconds	// the amount of time to wait, in milliseconds

);

Parameters

classname

The class name of the window to wait until closed.

title

The title bar text of the window to wait until closed.

milliseconds

The amount of time in milliseconds to wait for the window to close.

Return Values

The WaitWindowClosed function returns TRUE (non-zero) if the window is closed. The WaitWindowClosed function returns FALSE (zero) if the time elapses without the window becoming closed or the user selected “Continue”.

Remarks

If both a class name and a window title are used, both must match. Otherwise, only one of the two parameters needs to match. Enter an empty string "" to match any window.

There are 1000 milliseconds in 1 second.

Example

if (WaitWindowClosed("", "Display Properties", 10000))

	MessageBox("The Display Properties window is now closed.", "Wait", MB_OK);

else

	MessageBox("The Display Properties window never closed.", "Wait", MB_OK);

This example waits 10 seconds for the Display Properties window to close and displays the appropriate message box.

�WaitWindowTitleVisible

The WaitWindowTitleVisible function waits for the window title to become visible.

int WaitWindowTitleVisible(

string title,	// the title bar text of the window to wait for

int milliseconds	// the amount of time to wait, in milliseconds

);

Parameters

title

The exact title bar text of the window to wait for.

milliseconds

The amount of time in milliseconds to wait for the window to becomes visible.

Return Values

The WaitWindowTitleVisible function returns TRUE (non-zero) if the window becomes visible. The WaitWindowTitleVisible function returns FALSE (zero) if the time elapses without the window becoming visible or the user selected “Continue”.

Remarks

There are 1000 milliseconds per second.

This function is useful pause the script to wait for a program to load after using the Run() function.

Example

if (WaitWindowTitleVisible("Untitled - Notepad", 10000))

	MessageBox("The Notepad window is now visible.", "Wait", MB_OK);

else

	MessageBox("The Notepad window never became visible.", "Wait", MB_OK);

This example waits 10 seconds for the Notepad window to become visible and displays the appropriate message box.

�WriteFileString

The WriteFileString function writes a string to a file.

int WriteFileString(

HFILE file,	// the file to write to

string text	// the text string to write

);

Parameters

file

The handle to the file to write to.

text

The text string to write.

Return Values

The WriteFileString function returns TRUE (non-zero) if the string was successfully written. The WriteFileString function returns FALSE (zero) if there was an error writing the string to the file.

Remarks

When writing a line of text to a file, be sure to append “\r\n” (return-newline) to the end of the string.

Example

HFILE fp = OpenFile("test.txt", FILE_READ);

if (fp == NULL)

	{

	MessageBox("There was an error opening the file test.txt.");

	return;

	}

if (!WriteFileString(fp, "This is a line of text.\r\n"))

	{

	MessageBox("There was an error writing to the file test.txt.");

	return;

	}

CloseFile(fp);

This example writes a line of text to a file.

See Also

OpenFile

�File menu commands

The File menu offers the following commands:

New�Creates a new script file.��Open�Opens an existing script file.��Close�Closes an opened script file.��Save�Saves an opened script file using the same file name.��Save As�Saves an opened script file to a specified file name.��Save All�Saves all the modified open script files.��Print�Prints the active script file.��Print Preview�Displays the script file on the screen as it would appear printed.��Print Setup�Selects a printer and printer connection.��Exit�Exits CLR Script.���New command (File menu)

Use this command to create a new script file in CLR Script.

You can open an existing script file with the Open command.

Shortcuts

Toolbar:	�

Keys:	CTRL+N

�Open command (File menu)

Use this command to open an existing script file in a new window. You can open multiple script files at once. Use the Window menu to switch among the multiple open script files. See the Window 1, 2, ... command.

You can create new script files with the New command.

Shortcuts

Toolbar:	�

Keys:	CTRL+O

�Close command (File menu)

Use this command to close all windows containing the active script file. CLR Script suggests that you save changes to your script file before you close it. If you close a script file without saving, you lose all changes made since the last time you saved it. Before closing an untitled script file, CLR Script displays the Save As dialog box and suggests that you name and save the script file.

You can also close a script file by using the Close icon on the script file's window, as shown below:

�

�Save command (File menu)

Use this command to save the active script file to its current name and directory. When you save a script file for the first time, CLR Script displays the Save As dialog box so you can name your script file. If you want to change the name and directory of an existing script file before you save it, choose the Save As command.

Shortcuts

Toolbar:	�

Keys:	CTRL+S

�Save As command (File menu)

Use this command to save and name the active script file. CLR Script displays the Save As dialog box so you can name your script file.

To save a script file with its existing name and directory, use the Save command.

�Save All command (File menu)

Use this command to save all the open modified script files to their current name and directory. When you save a script file for the first time, CLR Script displays the Save As dialog box so you can name your script file. If you want to change the name and directory of an existing script file before you save it, choose the Save As command.

�Print command (File menu)

Use this command to print a script file. This command presents a Print dialog box, where you may specify the range of pages to be printed, the number of copies, the destination printer, and other printer setup options.

Note: The toolbar button prints directly to the printer using the current defaults.

Shortcuts

Toolbar:	�

Keys:	CTRL+P

�Print Progress Dialog

The Printing dialog box is shown during the time that CLR Script is sending output to the printer. The page number indicates the progress of the printing.

To abort printing, choose Cancel.

�Print Preview command (File menu)

Use this command to display the active script file as it would appear when printed. When you choose this command, the main window will be replaced with a print preview window in which one or two pages will be displayed in their printed format. The Print Preview toolbar offers you options to view either one or two pages at a time; move back and forth through the pages; zoom in and out of pages; and initiate a print job.

�Print Preview toolbar

The Print Preview toolbar offers you the following options:

Print

Bring up the print dialog box, to start a print job.

Next Page

Preview the next printed page.

Prev Page

Preview the previous printed page.

One Page / Two Page

Preview one or two printed pages at a time.

Zoom In

Take a closer look at the printed page.

Zoom Out

Take a larger look at the printed page.

Close

Return from Print Preview to the editing window.

�Print Setup command (File menu)

Use this command to select a printer and a printer connection. This command presents a Print Setup dialog box, where you specify the printer and its connection.

�1, 2, 3, 4, ... command (File menu)

Use the numbers and file names listed at the bottom of the File menu to open the last script files you closed. Choose the number that corresponds with the script file you want to open.

�Exit command (File menu)

Use this command to end your CLR Script session. You can also use the Close command on the application Control menu. CLR Script prompts you to save script files with unsaved changes.

Shortcuts

Mouse:	Double-click the application's Control menu button.

	�

Keys:	ALT+F4

�Edit menu commands

The Edit menu offers the following commands:

Undo�Undo last action.��Cut�Cut the selection and put it on the Clipboard��Copy�Copy the selection and put it on the Clipboard.��Paste�Insert Clipboard contents.��Find�Find the specified text.��Find Next�Find the next occurrence of the specified text.��Replace�Replace specific text with different text.���Undo command (Edit menu)

Use this command to reverse the last editing action, if possible. The Undo command is disabled on the menu if you cannot reverse your last action.

Shortcuts

Keys:	CTRL+Z or

	ALT-BACKSPACE

�Cut command (Edit menu)

Use this command to remove the currently selected text and put it on the clipboard. This command is unavailable if there is no text currently selected.

Cutting text to the clipboard replaces the contents previously stored there.

Shortcuts

Toolbar:	�

Keys:	CTRL+X

�Copy command (Edit menu)

Use this command to copy the currently selected text onto the clipboard. This command is unavailable if there is no text currently selected.

Copying text to the clipboard replaces the contents previously stored there.

Shortcuts

Toolbar:	�

Keys:	CTRL+C

�Paste command (Edit menu)

Use this command to insert a copy of the clipboard text contents. This command is unavailable if the clipboard is empty.

Shortcuts

Toolbar:	�

Keys:	CTRL+V

�Find command (Edit menu)

Use this command to find the specified text using the Find dialog box.

After the Find dialog box is closed, you can use the Find Next command to find the next occurrence of the specified text.

Shortcut

Toolbar:	�

Keys:	Ctrl+F

�Find Next command (Edit menu)

Use this command to find the next occurrence of the specified text. Use the Find command to specify the text to find.

Shortcut

Key:	F3

�Replace command (Edit menu)

Use this command to replace the specific text with different text using the Replace dialog box.

Shortcut

Keys:	Ctrl+H

�View menu commands

The View menu offers the following commands:

Toolbar�Shows or hides the toolbar.��Status Bar�Shows or hides the status bar.��Font�Select the editor font.���Toolbar command (View menu)

Use this command to display and hide the Toolbar, which includes buttons for some of the most common commands in CLR Script, such as File Open. A check mark appears next to the menu item when the Toolbar is displayed.

See Toolbar for help on using the toolbar.

�Toolbar

�

The main toolbar is displayed across the top of the application window, below the menu bar. The toolbar provides quick mouse access to many tools used in CLR Script.

To hide or display the Toolbar, choose Toolbar from the View menu (ALT, V, T).

Click	To

�	Open a new script file.

�	Open an existing script file. CLR Script displays the Open dialog box, in which you can locate and open the desired file.

�	Save the active script file with its current name. If you have not named the script file, CLR Script displays the Save As dialog box.

�	Prints the current script file directly to the printer.

�	Cut the current selection and put it on the Clipboard

�	Copy the current selection and put it on the Clipboard.

�	Insert the Clipboard contents.

�	Find the specified text.

�	Find information about a window or control.

�	Compile the active script file.

�	Run the active script file.

�	Display program information, version number and copyright.

�	Display help for clicked on buttons, menus and windows.

�	List Help topics.

�Status Bar command (View menu)

Use this command to display and hide the Status Bar, which describes the action to be executed by the selected menu item or depressed toolbar button, and keyboard latch state. A check mark appears next to the menu item when the Status Bar is displayed.

See Status Bar for help on using the status bar.

�Status Bar

�

The status bar is displayed at the bottom of the CLR Script window. To display or hide the status bar, use the Status Bar command in the View menu.

The left area of the status bar describes actions of menu items as you use the arrow keys to navigate through menus. This area similarly shows messages that describe the actions of toolbar buttons as you depress them, before releasing them. If after viewing the description of the toolbar button command you wish not to execute the command, then release the mouse button while the pointer is off the toolbar button.

The right areas of the status bar indicate which of the following keys are latched down:

Indicator	Description

CAP	The Caps Lock key is latched down.

NUM	The Num Lock key is latched down.

�Font command (View menu)

Use this command to select the editor window’s font name and size using the Font dialog box. The font style selection is ignored. The select font is also used for printing the script files.

�Build menu

The Build menu offers the following commands:

Compile�Compile the active script file.��Run�Run the active script file.��Strict�Enable or disable strict compiling.���Compile command (Build menu)

Use this command to compile the active script file. All the modified open files are automatically saved.

This command is useful to check for syntax errors before running the script.

Shortcuts

Toolbar:	�

Keys:	CTRL+F7

�Run command (Build menu)

Use this command to compile and run the active script file. All the modified open files are automatically saved.

The Run command calls the function called main in the active script file.

Syntax

void main()

{

statements and function calls

}

Shortcuts

Toolbar:	�

Key:	F5

�Strict command (Build menu)

Use this command to enable to disable strict compiling. Strict compiling is enabled if there is a check mark next to the command.

See Also

#strict statement

Command Line Options

�Tools menu commands

The Tools menu offers the following commands:

Window Information Finder�Find window information.��System Tray Launcher�Configure the system tray launcher settings.��Create Desktop Shortcut�Create a desktop shortcut to run the active script file.���Window Information Finder command (Tools menu)

Use this command to find information about a window or control using the Window Information Finder dialog box.

Shortcuts

Toolbar:	�

Keys:	Ctrl+I

�Window Information Finder dialog box

The following options allow you to find information about a window:

Finder Icon

Drag the finder icon over a window to displays it’s information.

Hide CLR Script

If checked, the CLR Script main window will be hidden to be able to find windows behind the CLR Script main window.

Caption

The caption of the window.

Class

The class name of the window.

ID

The child window id.

Close

Choose this button to close the Window Information Finder dialog box. If the CLR Script main window was hidden, it will be shown.

�System Tray Launcher command (Tools menu)

Use this command to configure the system tray launcher. Use the System Tray Launcher dialog box to configure the menu displayed.

�System Tray Launcher dialog box

The following options allow you to configure the system tray launcher settings.

Run launcher when CLR Script starts

If checked, run the system tray launcher whenever CLR Script starts. The system tray launcher will close when CLR Script closes.

Run launcher then Windows starts up

If checked, run the system tray launcher when Windows starts up. The system tray launcher will remain open until the Exit command is selected from the pop-up menu.

Shortcuts

The list of menu command names and the script files that will be run. The menu is displayed in the order listed.

Add

Choose this button to add a new shortcut. Use the Add/Edit dialog box to add a new shortcut. The active script file will automatically be entered the first time this is chosen.

Edit

Choose this button to edit the selected shortcut. Use the Add/Edit dialog box to add a new shortcut.

Delete

Choose this button to delete the selected shortcut.

Move Up

Choose this button to move the selected shortcut up in the order.

Move Down

Choose this button to move the selected shortcut down in the order.

�Add/Edit dialog box

The following options allow you to add or edit a shortcut.

Name

Enter the name of the shortcut to put on the menu.

Script File Name

Enter the file name of the script to run.

Browse

Choose this button to browse for the script file name.

�Create Desktop Shortcut command (Tools menu)

Use this command to create a desktop shortcut to run the active script file.

�Window menu commands

The Window menu offers the following commands, which enable you to arrange multiple views of multiple script files in the application window:

New Window�Open another window for the active script file.��Cascade�Arranges windows in an overlapped fashion.��Tile�Arranges windows in non-overlapped tiles.��Arrange Icons�Arranges icons of minimized windows.��Window 1, 2, ...�Goes to specified window.���New command (Window menu)

Use this command to open a new window with the same contents as the active window. You can open multiple document windows to display different parts or views of a document at the same time. If you change the contents in one window, all other windows containing the same document reflect those changes. When you open a new window, it becomes the active window and is displayed on top of all other open windows.

�Cascade command (Window menu

Use this command to arrange multiple opened windows in an overlapped fashion.

�Tile command (Window menu)

Use this command to arrange multiple opened windows in a non-overlapped fashion.

�Arrange Icons command (Window menu)

Use this command to arrange the icons for minimized windows at the bottom of the main window. If there is an open script file window at the bottom of the main window, then some or all of the icons may not be visible because they will be underneath this script file window.

�1, 2, ... command (Window menu)

CLR Script displays a list of currently open script file windows at the bottom of the Window menu. A check mark appears in front of the script file name of the active window. Choose a script file from this list to make its window active.

�Help menu commands

The Help menu offers the following commands, which provide you assistance with this application:

Help Topics�Offers you an index to topics on which you can get help.��Language Reference�Read the language reference help.��Built-in Function Reference�Read the built-in function reference help.��Online Support�Get help for CLR Script on the Internet.��Tip of the Day�Display the Tip of the Day.��Register CLR Script�Register your copy of CLR Script.��Registration Number�Enter your Registration Number for CLR Script.��About�Display program information, version number and copyright.���Help Topics command (Help menu)

Use this command to display the opening screen of Help. From the opening screen, you can jump to step-by-step instructions for using CLR Script and various types of reference information.

Once you open Help, you can click the Contents button whenever you want to return to the opening screen.

Shortcut

Toolbar:	�

�Online Support command (Help menu)

Use this command to get help for CLR Script on the Internet. The CLR Software Support web page will open in your web browser.

The URL is: http://www.clrsoftware.com/support

�Tip of the Day command (Help menu)

Use this command to display the Tip of the Day. You can turn on or off the Tip of the Day at startup by checking or unchecking the “Show tips at startup” option.

�Register CLR Script command (Help menu)

Use this command to register your copy of CLR Script.

See: Registration Information

�Registration Number command (Help menu)

Use this command to register your copy of CLR Script using the Registration Number dialog box by entering the registration number you purchased.

�About command (Help menu)

Use this command to display the copyright notice and version number of your copy of CLR Script.

Shortcut

Toolbar:	�

�Context Help command

Use the Context Help command to obtain help on some portion of CLR Script. When you choose the Toolbar's Context Help button, the mouse pointer will change to an arrow and question mark. Then click somewhere in the CLR Script window, such as another Toolbar button. The Help topic will be shown for the item you clicked.

Shortcuts

Toolbar:	�

Keys:	SHIFT+F1

�Title Bar

The title bar is located along the top of a window. It contains the name of the application and script file.

To move the window, drag the title bar. Note: You can also move dialog boxes by dragging their title bars.

A title bar may contain the following elements:

*	Application Control-menu button

*	Script file Control-menu button

*	Maximize button

*	Minimize button

*	Name of the application

*	Name of the script file

*	Restore button

�Scroll bars

Displayed at the right and bottom edges of the script file window. The scroll boxes inside the scroll bars indicate your vertical and horizontal location in the script file. You can use the mouse to scroll to other parts of the script file.

�Size command (System menu)

Use this command to display a four-headed arrow so you can size the active window with the arrow keys.

�

After the pointer changes to the four-headed arrow:

	1.	Press one of the DIRECTION keys (left, right, up, or down arrow key) to move the pointer to the border you want to move.

	2.	Press a DIRECTION key to move the border.

	3.	Press ENTER when the window is the size you want.

Note: This command is unavailable if you maximize the window.

Shortcut

Mouse:	Drag the size bars at the corners or edges of the window.

�Move command (Control menu)

Use this command to display a four-headed arrow so you can move the active window or dialog box with the arrow keys.

�

Note: This command is unavailable if you maximize the window.

�Minimize command (application Control menu)

Use this command to reduce the CLR Script window to an icon.

Shortcut

Mouse:	Click the minimize icon � on the title bar.

�Maximize command (System menu)

Use this command to enlarge the active window to fill the available space.

Shortcut

Mouse:	Click the maximize icon � on the title bar; or double-click the title bar.

�Next command (script file Control menu)

Use this command to switch to the next open script file window. CLR Script determines which window is next according to the order in which you opened the windows.

Shortcut

Keys:	CTRL+F6

�Close command (Control menus)

Use this command to close the active window or dialog box.

Double-clicking a Control-menu box is the same as choosing the Close command.

�

Note: If you have multiple windows open for a single script file, the Close command on the script file Control menu closes only one window at a time. You can close all windows at once with the Close command on the File menu.

Shortcuts

Keys: 	CTRL+F4 closes a script file window

	ALT+F4 closes the CLR Script window or dialog box

�Restore command (Control menu)

Use this command to return the active window to its size and position before you chose the Maximize or Minimize command.

�Revision History

Version 1.62

*	Added the BrowserAttachIE function.

*	Added the BrowserGetOpenWindowTitles function.

*	Added the GetIPAddress function.

*	Added the strlwr function.

*	Added the strupr function.

*	Improved the BrowserSetFormField function to use the field value if there is no field name or use both the field name and value. The onchange and onclick events are also now triggered.

*	Improved the ComboBox_SelectString and ListBox_SelectString functions by adding an optional send change notification message.

*	Improved the ListBox_SelectString function by adding the ability to clear the selections.

*	Added the ability to pass parameters to a function by reference.

*	Added the Find Next command.

*	Fixed sending the extended keys: home, end, delete, insert, pageup, pagedown, up, down, left, and right.

*	Fixed a few aspects of the script engine.

*	Fixed a few aspects of the installation.

*	Fixed a few aspects of the script launcher.

Version 1.61

*	Added the ComboBox_GetCount function.

*	Added the ComboBox_GetText function.

*	Added the FtpGetFolderListing function.

*	Added the GetDlgItemText function.

*	Added the GetFileSize function.

*	Added the GetFileTimeString function.

*	Added the GetMenuCommandStrings function.

*	Added the GetMenuState function.

*	Added the IsDlgButtonChecked function.

*	Added the ListBox_GetCount function.

*	Added the ListBox_GetText function.

*	Improved the CurrentTimeString function to allow a default value for the format.

*	Improved the GetFolderListing function by adding a sort listing option.

*	Improved the FTP functions by adding the option to specify a port.

*	Improved the RunWait function to allow default values for the show and milliseconds parameters.

*	Improved the SetDlgItemText function with the option to also send a change message to the control.

*	Added the command line option ‘/c’ to enable string special codes in the parameters.

*	Added the Built-in Function Reference command to the Help menu.

*	Added the Online Support command to the Help menu.

*	Fixed a few aspects of the script engine.

*	Fixed a few aspects of the installation.

*	Improved the help.

Version 1.60

*	Made writing scripts easier by having a non-strict compiler option.

*	Added the BrowserGetStatusText function.

*	Added the BrowserGetTextLinkUrl function.

*	Added the GetPixelColor function.

*	Added the SetSystemTime function.

*	Added the Strict option on the Build menu.

*	Added the #strict statement.

*	Added command line options for the strict compiler option.

*	Improved the BrowserFollowTextLink function to include following graphic links with no alternate text.

*	Improved the RegDeleteKey function to include the option of deleting all the descendants or only deleting empty sub keys.

*	main() functions are now excluded from #include files.

*	Fixed a few aspects of the script engine.

*	Improved the editor text selection by not automatically selecting words.

*	Improved the help.

Version 1.52

*	Added the GetForegroundWindowTitle function.

*	Added the MoveFile function.

*	Improved the BrowserClickFormButton function.

*	Improved the BrowserSetFormField function.

*	Fixed a few aspects of the script engine.

*	Improved the help.

Version 1.51

*	Added the DownloadUrl function.

*	Added the FtpDownloadUrl function.

*	Added the FtpGetOpenFileName function.

*	Added the SendMailMapi function.

*	Added the SetWaitIncrement function.

*	Added the ability to automatically check for an update if connected to the Internet.

*	Fixed a few aspects of the script engine.

*	Improved the help.

Version 1.50

*	Added the ASCII function.

*	Added the BrowserGetHtml function.

*	Added the Chr function.

*	Added the CreateFolder function.

*	Added the DeleteFolder function.

*	Added the FolderExists function.

*	Added the FtpDelete function.

*	Added the FtpDownload function.

*	Added the FtpRename function.

*	Added the FtpUpload function.

*	Added the ReplaceString function.

*	Added the ability to return integer values to a batch file or a calling program.

*	Added the ability to pass parameters when running a script file from the command line.

*	Added more SendKeys special codes.

*	Improved the editor with drag-n-drop and line selection.

*	Increased the maximum size of a script file to 1 MB (1,048,576 bytes).

*	Increased the maximum length of a string to 16 MB (16,777,216 characters).

*	Added the ability to open multiple files with the Open command on the File menu.

*	Fixed a few aspects of the uninstallation.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.44

*	Added the BrowseForFolder function.

*	Added the BrowserIsDocumentInteractive function.

*	Added the BrowserWaitDocumentInteractive function.

*	Added the GetFolderListing function.

*	Improved the FindString function by adding the optional start character parameter.

*	The System Tray Launcher command Add option defaults to the active script file.

*	Fixed and improved the installation and uninstallation under Windows NT/2000.

*	Fixed and improved a few aspects of the script engine.

Version 1.43

*	Added the GetFileAttributes function.

*	Added the GetOpenFileName function.

*	Added the SetFileAttributes function.

*	Added the SetRunningScriptWindow function.

*	Added the Create Desktop Shortcut command on the Tools menu.

*	Improved the InputString function by adding the optional title and timeout values.

*	Improved the MessageBox function by adding the optional timeout values.

*	Improved the OpenFile function by adding some more file access modes.

*	Improved the VerifyActiveWindowTitle, VerifyActiveWindowTitleSub, VerifyActiveWindowText and VerifyActiveMDIWindowTitle functions by adding an optional timeout value.

*	Improved the installation procedure.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.42

*	Added the atoi function.

*	Added the BrowserGetBodyText function.

*	Added the BrowserGetLocationURL function.

*	Added the BrowserSetInternetSettings function.

*	Added the CloseFile function.

*	Added the ExitWindows function.

*	Added the FileEOF function.

*	Added the OpenFile function.

*	Added the ReadFileString function.

*	Added the WriteFileString function.

*	Added the HFILE type specifier.

*	Added the Font command on the View menu to select the editor window’s font name and size.

*	Added the ability to set dialog box controls by using the id of the control instead of the text label.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.41

*	Added the BrowserGetTitle function.

*	Added the BrowserRefresh function.

*	Added the CopyFile function.

*	Added the FindString function.

*	Added the rand function to generate a random number.

*	Added the constant RAND_MAX.

*	Fixed and improved a few aspects of the script engine.

Version 1.40

*	Added the ability to declare and use variables.

*	Added the BrowserClickFormButton function.

*	Added the BrowserClose function.

*	Added the BrowserGetFormFields function.

*	Added the BrowserGetFormNames function.

*	Added the BrowserGetTextLinks function.

*	Added the BrowserGoBack function.

*	Added the BrowserFollowTextLink function.

*	Added the BrowserIsDocumentComplete function.

*	Added the BrowserLaunchIE function.

*	Added the BrowserNavigate function.

*	Added the BrowserResetForm function.

*	Added the BrowserSetActiveForm function.

*	Added the BrowserSetForegroundWindow function.

*	Added the BrowserSetFormField function.

*	Added the BrowserShowWindow function.

*	Added the BrowserSubmitForm function.

*	Added the BrowserWaitDocumentComplete function.

*	Added the GetClipboardText function.

*	Added the LeftString function.

*	Added the MidString function.

*	Added the RightString function.

*	Added the RunWait function.

*	Added the strlen (string length) function.

*	Added the HBROWSER type specifier.

*	Added the constant NULL.

*	Added the Tip of the Day when the program starts. The Tip of the Day can also be accessed from the Help menu.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.31

*	Added the EnableScreenSaver function.

*	Added the GetEnvironmentVariable function.

*	Added the IsConnectedToInternet function.

*	Added the RegGetKeyValueInt function.

*	Added the RegGetKeyValueString function.

*	Added the StopScreenSaver function.

*	Added the string comparison logical operators == and !=.

*	Added the remainder operator %.

*	Fixed the order of precedence when evaluating the operators.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.30

*	Added the ability to run script files from a system tray menu. Configure the system tray launcher settings by using the Configure Launcher command on the Tools menu.

*	Added the AppendFileString function.

*	Added the CurrentTimeString function.

*	Added the GetUserName function.

*	Added the IsScreenSaverRunning function.

*	Added the VerifyActiveMDIWindowTitle function.

Version 1.24

*	Added the InputString function.

*	Added the SetDefaultPrinter function.

*	Added the MB_OKCANCEL MessageBox buttons option.

*	Added the MB_YESNO MessageBox buttons option.

*	Added the MB_ICONQUESTION MessageBox icon option.

*	Added the integer logical operators ==, !=, <, <=, > and >=.

*	The registration and installation information is now stored for the local machine instead of the current user.

*	Fixed and improved a few aspects of the script engine.

Version 1.23

*	Added the IsServiceActive function.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.22

*	Added the ComboBox_SelectString function.

*	Added the ListBox_SelectString function.

*	Added the ability to run CLR Script without installing the program by adding the switch “/n” to the command line.

*	Fixed and improved a few aspects of the script engine.

Version 1.21

*	Added the break statement.

*	Added the repeat statement.

*	Added the while statement.

*	Fixed and improved a few aspects of the script engine.

*	Fixed a few problems with the installation.

*	Improved the help.

Version 1.20

*	Added the BrowseURL function.

*	Added the CreateFile function.

*	Added the DeleteFile function.

*	Added the FileExists function.

*	Added the ability to run a script without displaying the progress dialog window by adding the switch “/h” to the command line.

*	Fixed a few bugs in the script engine.

*	Fixed getting help for dialog boxes by pressing F1.

Version 1.13

*	Added the RegCreateKey function.

*	Added the RegDeleteKey function.

*	Added the RegDeleteKeyValue function.

*	Added the RegSetKeyValueInt function.

*	Added the RegSetKeyValueString function.

*	Added the HKEY type specifier.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.12

*	Added the itoa (integer to ascii) function.

*	Added the operators +, -, *, /, &, ||, and &&.

*	Added the string operator + to concatenate strings.

*	Fixed and improved a few aspects of the script engine.

Version 1.11

*	Added the NetUserChangePassword function.

*	Added the SetForegroundWindowTitleSub function.

*	Added the Window Information Finder command.

*	Fixed and improved a few aspects of the script engine.

*	Improved the help.

Version 1.10

*	Added the ClickButton function.

*	Added the CopyToClipboard function.

*	Added the EmptyClipboard function.

*	Added the exit function.

*	Added the SetDlgItemText function.

*	Added the WaitWindowClosed function.

*	Added the #include statement.

*	Added the string special character ‘\r’.

*	Added the ability to continue long string constants onto the next line by ending the line with a backward slash ‘\’.

*	Added the Find command.

*	Added the Replace command.

*	Pressing F1 when the cursor is on a keyword brings up help for that word.

*	Added the ability to run a script from a shortcut by adding the switch “/r” to the command line.

*	New lines are automatically indented to the previous line.

*	Pressing the tab key with multiple lines selected indents the lines.

*	Pressing the shift+tab keys with multiple lines selected unindents the lines.

*	When opening a script file from the command line, if the file does not exist, you will be asked if you would like to create a new file.

*	When running or compiling, all the modified open files are automatically saved.

*	Fixed and improved many aspects of the script engine.

*	Improved the error reporting.

*	Improved the help.

Version 1.0

*	First public release of CLR Script.

*	Added the Run command.

*	Added the Compile command.

*	The editor is a simple edit control similar to Notepad.

*	Added the CheckDlgButton function.

*	Added the FindWindow function.

*	Added the IsEmpty function.

*	Added the MessageBox function.

*	Added the Pause function.

*	Added the Run function.

*	Added the SendKeys function.

*	Added the SetForegroundWindow function.

*	Added the VerifyActiveWindowText function.

*	Added the VerifyActiveWindowTitle function.

*	Added the VerifyActiveWindowTitleSub function.

*	Added the WaitWindowTitleVisible function.

*	Added the int type specifier.

*	Added the string type specifier.

*	Added the void type specifier.

*	Added the negation “!” operator.

*	Added the bitwise or “|” operator.

*	Added the constant TRUE.

*	Added the constant FALSE.

�Registration Information

If you use CLR Script for more than 30 days, you are required to become a registered, licensed user. Before using CLR Script, carefully read the License Agreement.

Registered users receive the following benefits:

	1.	Free minor updates via download from the Internet or $5.00 US for updates on diskette sent via postal mail.

	2.	One year of product support via email and postal mail from the date of registration. Unregistered users will only receive support through the online support forum.

	3.	A say in what CLR Script can do. You are encouraged to let me know what new features you would like to see.

	4.	You will receive a Registration Number that will remove all the ads displayed in the program.

	5.	Your registration will ensure continued enhancements to CLR Script.

To register your copy of CLR Script by postal mail or fax, fill out the Registration Form and send it in. To register online, visit the CLR Script Home Page at www.clrsoftware.com/clrscript.

�Registration Form

To register CLR Script, send the following information along with your credit card information, a check, money order, or cash. Payment must be in US funds drawn from a US bank, payable to Carl L. Roth. Site licenses can be purchased using a company purchase order. If you are registering more than one single user license, you may optionally submit forms for each additional user. Site licenses will be registered under the company name. Please print or type clearly. Especially the email address since that is my main form of communication to you.

1.�Registration Fee�Price��Quantity�Total���Single User Licenses�$39.00�each�________�________���5 User Site License�$125.00��________�________���25 User Site License�$500.00��________�________���100 User Site License�$1,500.00��________�________���Unlimited US Site License�$3,000.00��________�________���Unlimited Worldwide Site License�$4,000.00��________�________��2.�Name:�___��3.�Company: *�___��4.�Address:�___����___��5.�City:�___��6.�State/Province:�___��7.�Zip/Postal Code:�___��8.�Country:�___��9.�Email Address:�___��10.�Phone: *�___��11.�Current version number of CLR Script: Version 1.62��12.�Where did you find out about CLR Script? *

[] CLR Software	[] Download.com	[] Dave Central

[] Password Tracker Deluxe	[] Register Now	[] Simtel

[] TUCOWS	[] WinSite	[] ZDNet Software Library

[] Other:	__��13.�Any enhancements to CLR Script you would like to see? *

___��14.�Payment Method:	[] Check [] Money Order [] Cash [] Purchase Order

Credit Card:	[] Visa	[] Mastercard	[] Discover (Novus)

	[] American Express	[] Eurocard

Name on Card:	_________________________________

Card Number:	_________________________________ Expiration Date: __________

Signature:	_________________________________��

Send to:	Carl L. Roth

P.O. Box 745

St. Joseph, IL 61873

USA

Mailed in credit card purchases are processed by Register Now, www.regnow.com.

Register Now Program ID: CLR Script 2096-1

* Optional information

�License Agreement

Carefully read the terms and conditions before using CLR Script. By using CLR Script, you agree to the terms and conditions stated. If you do not agree to the stated terms and conditions, do not use CLR Script.

CLR Script is Shareware, not public domain software or free software.

Unregistered users are granted a limited license to evaluate CLR Script for 30 days. The use of CLR Script after the 30 day evaluation period requires registration and is in violation of federal copyright laws.

One registered copy of CLR Script may be licensed to one person for use on multiple machines or for one machine for use by multiple people. CLR Script may be used on a network provided that all workstations that have access have individual licenses.

CLR Script is registered when the registration fee has been received.

CLR Script and its associated files cannot be modified or patched in any way including but not limited to decompiling, disassembling or reverse engineering the files.

A limited license is granted to distribute CLR Script for evaluation purposes only under the following conditions:

	1.	All the files must be distributed together in unmodified form.

	2.	No fee, charge, donation or other compensation can be accepted or requested, except as authorized below.

	a.	Electronic bulletin board and Internet site system operators may make CLR Script available for downloading as long as the above conditions are met and there is not a specific charge for downloading CLR Script. A charge for the overall use of the bulletin board system or Internet site is permitted.

	b.	Vendors of user-supported or shareware software and non-profit user groups may distribute CLR Script as long as the above conditions are met. A charge for disk duplication and handling of CLR Script is permitted provided, that when pro-rated, is not more than five dollars US.

A letter stating that you are distributing CLR Script is recommended so as updates can be provided.

Limited Warranty

THE CLR SCRIPT SOFTWARE AND ACCOMPANYING FILES ARE PROVIDED "AS IS" AND WITHOUT WARRANTIES AS TO THE PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EXPRESSED OR IMPLIED. BECAUSE OF THE VARIOUS HARDWARE AND SOFTWARE OPERATING ENVIRONMENTS, NO WARRANTY FOR A PARTICULAR PURPOSE IS OFFERED. IN NO EVENT SHALL CARL L. ROTH BE LIABLE FOR ANY DAMAGES WHATSOEVER ARISING OUT OF THE USE OR INABILITY TO USE CLR SCRIPT EVEN IF CARL L. ROTH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

